3.11 模型选择、欠拟合和过拟合

K折交叉验证

由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(KK-fold cross-validation)。在KK折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K−1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

多项式函数拟合实验

%matplotlib inline
import matplotlib.pyplot as plt 
import torch
import numpy as np
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

1 生成数据集

我们将生成一个人工数据集。在训练数据集和测试数据集中,给定样本特征x,我们使用如下的三阶多项式函数来生成该样本的标签:
y = 1.2 x − 3. 4 2 + 5.6 x 3 + 5 + ϵ y = 1.2x -3.4^2+5.6x^3 + 5 + ϵ y=1.2x3.42+5.6x3+5+ϵ
其中噪声项ϵ服从均值为0、标准差为0.01的正态分布。训练数据集和测试数据集的样本数都设为100。

n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
features = torch.randn((n_train + n_test, 1))
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) 
#torch.cat():将多个张量进行拼接,维数0拼接:竖着拼,维数1拼接:横着拼
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
          + true_w[2] * poly_features[:, 2] + true_b)
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

#看一看生成的数据集的前两个样本。

features[:2], poly_features[:2], labels[:2]
(tensor([[ 0.0767],
         [-1.2428]]),
 tensor([[ 7.6658e-02,  5.8764e-03,  4.5047e-04],
         [-1.2428e+00,  1.5445e+00, -1.9195e+00]]),
 tensor([  5.0784, -12.4844]))

2 定义、训练和测试模型

我们先定义作图函数semilogy,其中 y 轴使用了对数尺度。

def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    d2l.set_figsize(figsize)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        plt.semilogy(x2_vals, y2_vals, linestyle=':')   # 对y取对数
        plt.legend(legend)  #给图加上图例
    
#多项式函数拟合也使用平方损失函数。
#尝试使用不同复杂度的模型来拟合生成的数据集,所以我们把模型定义部分放在fit_and_plot函数中
num_epochs, loss = 100, torch.nn.MSELoss()

def fit_and_plot(train_features, test_features, train_labels, test_labels):
    net = torch.nn.Linear(train_features.shape[-1], 1)
    # 【通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了】

    batch_size = min(10, train_labels.shape[0])    
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)

    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y.view(-1, 1))
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        train_labels = train_labels.view(-1, 1)
        test_labels = test_labels.view(-1, 1)
        train_ls.append(loss(net(train_features), train_labels).item())
        test_ls.append(loss(net(test_features), test_labels).item())
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net.weight.data,
          '\nbias:', net.bias.data)

3 三阶多项式函数拟合(正常)

我们先使用与数据生成函数同阶的三阶多项式函数拟合。

fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], 
            labels[:n_train], labels[n_train:])
final epoch: train loss 9.412717918166891e-05 test loss 0.00014332747377920896
weight: tensor([[ 1.1971, -3.4005,  5.6001]]) 
bias: tensor([4.9998])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-asZuAc7E-1592486961855)(output_9_1.svg)]

4 线性函数拟合(欠拟合)

我们再试试线性函数拟合。很明显,该模型的训练误差在迭代早期下降后便很难继续降低。在完成最后一次迭代周期后,训练误差依旧很高。线性模型在非线性模型(如三阶多项式函数)生成的数据集上容易欠拟合。

fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train],
             labels[n_train:])

在这里插入图片描述

5 训练样本不足(过拟合)

事实上,即便使用与数据生成模型同阶的三阶多项式函数模型,如果训练样本不足,该模型依然容易过拟合。让我们只使用两个样本来训练模型。显然,训练样本过少了,甚至少于模型参数的数量。这使模型显得过于复杂,以至于容易被训练数据中的噪声影响。在迭代过程中,尽管训练误差较低,但是测试数据集上的误差却很高。这是典型的过拟合现象。

fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2],
             labels[n_train:])

final epoch: train loss 3.391462802886963 test loss 74.67402648925781
weight: tensor([[ 2.2439, -3.4016,  3.3723]]) 
bias: tensor([2.3387])

在这里插入图片描述

小结

  • 由于无法从训练误差估计泛化误差,一味地降低训练误差并不意味着泛化误差一定会降低。机器学习模型应关注降低泛化误 差。
  • 可以使用验证数据集来进行模型选择。
  • 欠拟合指模型无法得到较低的训练误差,过拟合指模型的训练误差远小于它在测试数据集上的误差。
  • 应选择复杂度合适的模型并避免使用过少的训练样本。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值