两种递归形式及时空复杂度分析

以二叉树为例说明递归,并用二叉树的最大深度为例说明两种递归方式的区别。

1、自底向上的递归

(1)这种递归方式类似于"二叉树的后序遍历"。
(2)在每个递归层次上,我们首先对所有子节点递归地调用函数,然后根据返回值和根节点本身的值得到答案。
(3)“自底向上” 的递归函数 bottom_up(root) 为如下所示:

return specific value for null node
left_ans = bottom_up(root.left)			// call function recursively for left child
right_ans = bottom_up(root.right)		// call function recursively for right child
return answers                           // answer <-- left_ans, right_ans, root.val

(4)二叉树的最大深度:

  1. 分析:对于树的单个节点,以节点自身为根的子树的最大深度x是多少?我们知道一个根节点,以其左子节点为根的最大深度为l和以其右子节点为根的最大深度为r,然后选择它们之间的最大值,再加上1来获得根节点所在的子树的最大深度。 那就是 x = max(l,r)+ 1。
  2. 图示:(从叶子节点开始,从下往上)
    自底向上的递归求二叉树树的最大深度
  3. 代码:
    // 自底向上的递归
    int maxDepth(TreeNode* root) {
        if(nullptr==root) return 0;
        // 类似于后序遍历(左子树--->右子树---->根节点)
        int left_res = maxDepth(root->left);
        int right_res = maxDepth(root->right);
        return max(left_res,right_res)+1;
    }
2、自顶向下的递归

(1)“自顶向下” 意味着在每个递归层级,我们将首先访问节点来计算一些值,并在递归调用函数时将这些值传递到子节点
(2) “自顶向下” 的解决方案可以被认为是一种前序遍历
(3)递归函数 top_down(root, params) 的原理是这样的:

return specific value for null node
update the answer if needed                      // answer <-- params
left_ans = top_down(root.left, left_params)		// left_params <-- root.val, params
right_ans = top_down(root.right, right_params)	// right_params <-- root.val, params
return the answer if needed                      // answer <-- left_ans, right_ans

(4)二叉树的最大深度:

  1. 分析:我们知道根节点的深度是1。 对于每个节点,如果我们知道某节点的深度,那我们将知道它子节点的深度。 因此,在调用递归函数的时候,将节点的深度传递为一个参数,那么所有的节点都知道它们自身的深度。 而对于叶节点,我们可以通过更新深度从而获取最终答案。
  2. 图示:(从根节点出发,向下递归,每次走到叶子节点的时候更新答案)
    在这里插入图片描述
  3. 代码
class Solution {
public:
    // 自顶向下的递归
    int res = 0;
    int maxDepth(TreeNode* root) {
        if(nullptr==root) return 0;
        maxDepth(root,1);
        return res;
    }    
    void maxDepth(TreeNode* root,int depth){
        if(nullptr==root) return;
        // 类似于前序遍历
        if(nullptr==root->left && nullptr==root->right){
            res = max(res,depth);
        }
        maxDepth(root->left,depth+1);
        maxDepth(root->right,depth+1);
    }
}
3、时间和空间复杂度
(路径总和):给你二叉树的根节点 root 和一个表示目标和的整数 targetSum ,判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。
bool hasPathSum(TreeNode* root, int targetSum) {
    if(nullptr==root) return false;
    if(root->left==nullptr && root->right==nullptr && root->val==targetSum ) return true;
    return hasPathSum(root->left,targetSum-(root->val)) || hasPathSum(root->right,targetSum-(root->val));
    }
(1) 时间复杂度

子问题的个数乘以解决一个子问题所需要的时间。(子问题的个数就是递归树中节点的总数)。

时间复杂度:O(N),其中 N 是树的节点数。
(2)空间复杂度

空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为 O(N)。平均情况下树的高度与节点数的对数正相关,空间复杂度为 O(logN)。

空间复杂度:O(H),其中 H 是树的高度。 
4、主定理

(1)主定理主要是用分治方法带来的递归表达式的渐近复杂度分析。
(2)描述:规模为n的问题通过分治,得到a个规模为n/b的问题,每次递归带来的额外计算为O(nd),d=logba。
则:
T(n) = O(log(n)*nd) ,if a = bd(1)
T(n) = O(nd), if a < bd(2)
T(n) = O(n^logba), if a > bd(3)

例如:

(BST的搜索):给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
// 递归
TreeNode searchBST(TreeNode* root, int val) {
    if (root == nullptr || val == root->val) return root;
    return val < root->val ? searchBST(root->left, val) : searchBST(root->right, val);
}

(1)时间复杂度
在二叉搜索中,每次分解后只有一个子问题 a = 1,其规模为初始问题的一半 b = 2,每次分解花费恒定时间O(1),因此d=0。则根据(1)式得log(n).
时间复杂度:O(H),其中 H 是树高。平均时间复杂度为O(logN),最坏时间复杂度为 O(N)。
(2)空间复杂度
空间复杂度:O(H),递归栈的深度为 H。平均情况下深度为O(logN),最坏情况下深度为O(N)。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值