子集和的元素和【二分】【DFS】

本文介绍了如何使用二分搜索配合深度优先算法,并结合剪枝技巧,来解决寻找元素和小于给定值k的子集数量的问题。通过将集合A按降序排列,可以显著提高算法效率,达到题目要求的60分解决方案。
摘要由CSDN通过智能技术生成

>Link

SSLOJ


>Description
在这里插入图片描述
1 ≤ n ≤ 50000 , 1 ≤ k ≤ 200000 , 1 ≤ A i ≤ 1 0 9 1≤n≤50000, 1≤k≤200000,1≤Ai≤10^9 1n50000,1k2000001Ai109


>解题思路

这道题竟然 二分+爆搜+剪枝 就能过
二分答案,爆搜来找和比 k k k 小的集合有多少个,加一些常规的剪枝
但是这样是60分,还有一个重要的剪枝就是把集合 A A A 从大到小排序,然后再爆搜,这样就可以跑得飞快,因为减少了很多不必要的搜索


>代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
#define LL long long
using namespace std;

int n, k;
LL a[N], cnt, cntt, ans;

LL read ()
{
	LL ret = 0;
	char c = getchar();
	while (c < '0' || c > '9') c = getchar();
	while (c >= '0' && c <= '9')
	{
		ret = ret * (LL)10 + c - '0';
		c = getchar();
	}
	return ret;
}
void dfs (int now, LL sum, LL w)
{
	if (sum > w) return;
	if (cnt >= k) return;
	if (now == 0)
	{
		if (sum < w && sum != 0) cnt++;
		if (sum == w) cntt++;
		return; 
	}
	dfs (now - 1, sum, w);
	dfs (now - 1, sum + a[now], w);
}

int main()
{
//	freopen ("16.in", "r", stdin);
	n = read(), k = read();
	LL l = 1, r = 0, mid;
	for (int i = 1; i <= n; i++)
	{
		a[i] = read();
		r += a[i];
	}
	sort (a + 1, a + 1 + n);
	while (l <= r)
	{
		mid = (l + r) / 2;
		cnt = 0;
		cntt = 0;
		dfs (n, 0, mid);
		if (cnt < k && cnt + cntt >= k)
		{
			ans = mid;
			break;
		}
		if (cnt >= k) r = mid - 1;
		else l = mid + 1;
	}
	printf ("%lld", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值