Spark文件保存到本地或HDFS:saveAsTextFile和saveAsObjectFile

本文介绍如何使用Scala和Java实现RDD数据的本地及HDFS存储。包括设置分区数、使用不同方法保存文件等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

scala版本:

 val rdd = sc.parallelize(1 to 10)
    rdd.saveAsTextFile("data1/save1")//保存在本地
   //todo 保存在hdfs上 设置了两个分区,所以会有两个文件
   rdd.saveAsTextFile("hdfs://hadoop01:9000/data/save/save1")
    //todo saveAsObjectFile 对于HDFS,默认采用SequenceFile保存。
rdd.saveAsObjectFile("hdfs://hadoop01:9000/data/save/save3")

java版本

        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 0));
        rdd.saveAsTextFile("file:///C:/data/save1"); //存到系统指定路径
        rdd.saveAsTextFile("data/sav21"); //保存到本地
        rdd.saveAsTextFile("data/save2");
        //保存到hdfs
        rdd.saveAsTextFile("hdfs://hadoop01:9000/data/save/save2");

在上传到hdfs时可能会报权限不够的错误,需要先给对应的目录赋权,如:

hdfs dfs -chmod -R 777 /data/

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值