Spark的数据存储目录HDFS

该博客详细介绍了如何在Spark环境中集成Hadoop、Hive和MariaDB,通过Spark进行数据处理后,将表元数据存储在Mysql,而数据本身存储在HDFS系统。步骤包括配置hive-site.xml,复制connector,启动thrift服务,以及在Spark中建表和插入数据,并在HDFS中验证数据存储。
摘要由CSDN通过智能技术生成

Spark主要在内存中运算,最终运算结果可以通过Hive存入到Mysql(MariaDB)和HDFS系统的。


结论
1.表的基本信息(表名,创建时间,所属者等)存入Mysql(MariaDB)
2.表的数据存入HDFS系统


下面的试验的前提是Spark环境,Hadoop,Hive,MariaDB环境是正常的情况下,

1.做spark和Hive集成,

2.通过Spark来建表,和插入数据,

3.在DB和DHFS中查看插入的数据。


一、项目环境

    Linux:centos7
    JDK: java version 1.8
    Python:3.8
    Spark:spark-3.2.1-bin-hadoop2.7.tgz
    Hadoop:2.7.3
    Hive:2.1.1
    MariaDB:5.5.64

二、环境集成

1.在spark/conf中创建 hive-site.xml 文件

<configuration&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值