倍增思想
RMQ
预处理复杂度O(nlogn),查询复杂度O(1)
st【i】【j】表示查询数组区间【i,i+2^j-1】的最值。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <stack>
#define ll long long
using namespace std;
const int N=1e5+5;
int a[N],n,m,l,r,st[N][30];
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(isdigit(ch))
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
n=read();
m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=n;i++)
st[i][0]=a[i];
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
while(m--)
{
l=read();
r=read();
int k=log2(r-l+1);
printf("%d\n",max(st[l][k],st[r-(1<<k)+1][k]));
}
return 0;
}