形如:1/a 的分数称为单位分数。 可以把1分解为若干个互不相同的单位分数之和。 例如: 1 = 1/2 + 1/3 + 1/9 + 1/18 1 = 1/2 + 1/3 + 1/10 + 1/1

探讨了将1分解为若干个互不相同的单位分数之和的问题,提供了寻找特定数量单位分数组合的算法实现,展示了如何在限制最大分母的情况下找到所有可能的分解方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

形如:1/a 的分数称为单位分数。

可以把1分解为若干个互不相同的单位分数之和。
例如:
1 = 1/2 + 1/3 + 1/9 + 1/18
1 = 1/2 + 1/3 + 1/10 + 1/15
1 = 1/3 + 1/5 + 1/7 + 1/9 + 1/11 + 1/15 + 1/35 + 1/45 + 1/231
等等,类似这样的分解无穷无尽。

我们增加一个约束条件:最大的分母必须不超过30

请你求出分解为n项时的所有不同分解法。

数据格式要求:

输入一个整数n,表示要分解为n项(n<12)
输出分解后的单位分数项,中间用一个空格分开。
每种分解法占用一行,行间的顺序按照分母从小到大排序。

例如,
输入:
4
程序应该输出:
1/2 1/3 1/8 1/24
1/2 1/3 1/9 1/18
1/2 1/3 1/10 1/15
1/2 1/4 1/5 1/20
1/2 1/4 1/6 1/12

再例如,
输入:
5
程序应该输出:
1/2 1/3 1/12 1/21 1/28
1/2 1/4 1/6 1/21 1/28
1/2 1/4 1/7 1/14 1/28
1/2 1/4 1/8 1/12 1/24
1/2 1/4 1/9 1/12 1/18
1/2 1/4 1/10 1/12 1/15
1/2 1/5 1/6 1/12 1/20
1/3 1/4 1/5 1/6 1/20

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

package five;
import java.util.Scanner;
public class fs {
	static Scanner sr = new Scanner(System.in);
	static int n=sr.nextInt();
	public static void main(String[] args) {
		int[] sum=new int[n];
		 dg(0,sum,2);
	}
	public static void dg(int num,int[] sum,int fm){	
		if(num==n){	
			int z=1;
			int m=sum[0];
			for(int i=1;i<sum.length;i++){	
				z=z*sum[i]+m;
				m*=sum[i];
				
			}
			//System.out.println();
			if(z==m){
				for(int i=0;i<sum.length;i++){	
					System.out.print("1/"+sum[i]+" ");
				}
				System.out.println("*******"+num);
			}
			
			return;
		}
		for(int i=fm;i<30;i++){
			sum[num]=i;
			dg(num+1,sum,i+1);
		}
	}
}
「埃及分数」是指将一个真分数表示若干个单位分数之和的形式,其中每个单位分数都是分子为1、分母为正整数的分数,并且所有单位分数互不相同。 例如: \[ \frac{2}{7} = \frac{1}{4} + \frac{1}{28} \] 这类题目常常出现在数学竞赛或算法练习题集中,尤其是在《信息学奥赛一本通》这本书里。「一本通 1.3 练习 1」就是关于如何求解这种类型的表达式的问题之一。对于此类问题,可以采用贪心算法来进行处理。 ### 贪心策略 为了找到给定的一个分数 \(a / b\) 的埃及分数展开形式,我们可以按照以下步骤操作: 1. **寻找最大的单元分数** 对于当前剩余需要分解的部分 \(\frac{a}{b}\),我们希望从中减去尽可能大的那个单一分量。即选择最小的 n 满足 \(\frac{1}{n} <= \frac{a}{b}\) ,也就是让 \(\frac{1}{x}\leqslant \frac{a}{b}, x=\lceil{\frac{b}{a}}\rceil\)(向上取整)。然后从原分数中扣除这个值作为结果的一部分; 2. **递归解决余下的部分** 减去了最大可能的单位分数之后,剩下的那部分继续应用上述规则直到全部转换完毕为止; 3. **终止条件** 当 a=0 或者已经得到了足够多的不同项,则停止计算过程并返回最终的结果列表。 通过这种方法能够有效地得到一组符合条件的答案序列。需要注意的是,在某些情况下可能会有多种合法解答方案存在,但我们的目标只是找出任意一种有效路径即可满足题目要求。 下面是一个简单的 Python 实现示例: ```python def egyptian_fraction(a, b): result = [] while (a > 0 and b > 0): # 计算下一个单位分数的分母 unit_denominator = -(-b // a) # 添加到结果集 result.append(f"1/{unit_denominator}") # 更新新的未覆盖部分 lcm = b * unit_denominator updated_a = ((lcm // b) * a - (lcm // unit_denominator)) updated_b = lcm if(updated_a == 0): break; a = updated_a b = updated_b return &#39; + &#39;.join(result) # 示例调用函数 print(egyptian_fraction(6, 14)) # 输出可能是 "1/3 + 1/14" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值