搭积木 小明最近喜欢搭数字积木, 一共有10块积木,每个积木上有一个数字,0~9。 搭积木规则: 每个积木放到其它两个积木的上面,并且一定比下面的两个积木数字小。 最后搭成4层的金字塔形,必须用

小明使用10块数字积木搭建金字塔,遵循特定规则:每块积木上的数字必须小于其下方两块积木的数字。挑战在于计算所有可能的搭建方式,形成四层的金字塔形状,充分利用所有积木。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搭积木

小明最近喜欢搭数字积木,
一共有10块积木,每个积木上有一个数字,0~9。

搭积木规则:
每个积木放到其它两个积木的上面,并且一定比下面的两个积木数字小。
最后搭成4层的金字塔形,必须用完所有的积木。

下面是两种合格的搭法:

0
1 2
3 4 5
6 7 8 9

0
3 1
7 5 2
9 8 6 4

请你计算这样的搭法一共有多少种?

请填表示总数目的数字。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。

package seven;

public class 搭积木 {
	static Boolean pd(int a,int b) {
		if(b>a)
		return false;
		else
		return true;
		
	}
public static void main(String[] args) {
int l=0;
	for(int a=0;a<=9;a++) {
		for(int b=0;b<=9;b++) {
			if(b==a&&a<b)	continue;
			if(pd(a,b))continue;
			for(int c=0;c<=9;c++) {
				if(c==a||c==b)	continue;
				if(pd(a,c))	continue;
				for(int d=0;d<=9;d++) {
					if(d==a||d==b||d==c)	continue;
					if(pd(b,d))	continue;
					for(int e=0;e<=9;e++) {
						if(e==a||e==b||e==c||e==d)	continue;
						if(pd(b,e))	continue;
						if(pd(c,e))continue;
						for(int f=0;f<=9;f++) {
							if(f==a||f==b||f==c||f==d||f==e)	continue;
							if(pd(c,f))	continue;
							for(int g=0;g<=9;g++) {
								if(g==a||g==b||g==c||g==d||g==e||g==f)	continue;
								if(pd(d,g))	continue;
								for(int h=0;h<=9;h++) {
									if(h==a||h==b||h==c||h==d||h==e||h==f||h==g)	continue;
									if(pd(d,h))	continue;
									if(pd(e,h))continue;
									for(int i=0;i<=9;i++) {
										if(i==a||i==b||i==c||i==d||i==e||i==f||i==g||i==h)	continue;
										if(pd(e,i))	continue;
										for(int j=0;j<=9;j++) {
											if(j==a||j==b||j==c||j==d||j==e||j==f||j==g||j==h||j==i)	continue;
											if(pd(f,i))	continue;
											if(pd(f,j))continue;
										l++;
										
										
}}}}}}}}}}
	System.out.println(l);
}}

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值