人脸关键点检测
文章平均质量分 58
sereiiii_x
今天的代码写完了吗
展开
-
【人脸关键点检测】HIH-Towards More Accurate Face Alignment via Heatmap in Heatmap论文复现
github上的HIH代码运行原创 2022-10-20 20:15:18 · 382 阅读 · 0 评论 -
【人脸关键点检测论文解读】Facial Landmark Points Detection Using Knowledge Distillation-Based Neural Networks
基于知识蒸馏的神经网络人脸标志点检测 (a)显示了所有面部关键点的分布,为了更好的可视化,在(b)中只显示属于面部边界的关键点。 与原始的hard-landmarks相比,soft-landmarks的精度较低,但更容易预测 使用L2损失函数独立训练两个teacher网络 第二阶段,使用KD-Loss训练学生网络。更具体地说,KD-Loss使用由两个教师网络生成的地标点来指导学生更准确地学习面孔对齐任务。 公式123生成soft-landmarks 参数m越小,我们用来创建f-new的特征向量就原创 2022-04-19 16:45:45 · 504 阅读 · 0 评论 -
【人脸关键点检测论文解读】Facial landmarks localization using cascaded neural networks
论文链接 论文中提到的一些知识点: 1、反向传播 2、CED : NME和数据集比例曲线,衡量在NME达到一定错误率时,已经覆盖的数据集比例,模型的鲁棒性指标 这篇论文是2021年发表在计算机视觉和图像理解(CVIU)上面的 CCNN 是一种完全由数据驱动且可端到端训练的人脸定位方案。它扩展了之前基于热图的本地化结果(Belagiannis 和 Zisserman,2017 年),实验证明它对头部姿势的大变化具有鲁棒性。此外,当使用最先进的人脸对齐数据集进行评估时,它与当代人脸定位方案相比具有优势。所提出原创 2022-04-19 11:50:18 · 3923 阅读 · 0 评论