牛客小白月赛29-I修改(最小生成树)

I-修改

题意:有一个混乱的序列(可以理解为忽略具体的值,求通解),第 i i i种操作可以使 l i l_i li ~ r i r_i ri加减任意值,费用为 w i w_i wi,求使得数列全为0的最小花费。

题解:
用差分数组表示这个序列,为了求通解,考虑最坏情况,即每一位都不为0
每一次操作在 l i l_i li + k +k +k,在 r i + 1 r_i+1 ri+1 − k -k k
最后的目标是使这个差分数组变为全0,非0的都要转移到 n + 1 n+1 n+1
可以联想到最小生成树,从 l i l_i li r i + 1 r_i+1 ri+1建边,求最小费用即可
如果不能将所有点包含进去则无解

Code:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define db double
#define ull unsigned ll
#define pii pair<int,int>
#define pdd pair<db,db>
#define pll pair<ll, ll>
#define mem(a,b) memset(a,b,sizeof(a));
#define lowbit(x) (x&-x)
#define lrt nl,mid,rt<<1
#define rrt mid+1,nr,rt<<1|1
template <typename T>
inline void read(T &t){
    t=0;
    int f=1;
    char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(isdigit(ch))
        t=t*10+ch-'0',ch=getchar();
    t*=f;
}   
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const ll Inf=0x7f7f7f7f7f7f7f7f;
const int inf=0x7f7f7f7f;
const db eps=1e-5;
const db Pi=acos(-1);
const int maxn=1e5+10;

int pre[maxn];
struct node {
    int from,to;
    ll w;
    bool operator<(const node &a) const {
        return w<a.w;
    }
} edge[maxn<<1];

int find(int x) {
    return pre[x]==x?x:pre[x]=find(pre[x]);
}

int main(void) {
    int n,m;
    read(n),read(m);
    for(int i=1;i<=n;i++) pre[i]=i;
    for(int i=1;i<=m;i++) {
        int a,b;
        ll c;
        read(a),read(b),read(c);
        edge[i]={a,b,c};    
    }
    sort(edge+1,edge+m+1);
    ll ans=0,cnt=0;
    for(int i=1;i<=m;i++) {
        int x=find(edge[i].from),y=find(edge[i].to+1);
        if(x==y) continue;
        ans+=(ll)edge[i].w;
        pre[x]=y;
        ++cnt;
    }
    printf("%lld\n",(cnt==n)?ans:-1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值