I-修改
题意:有一个混乱的序列(可以理解为忽略具体的值,求通解),第 i i i种操作可以使 l i l_i li ~ r i r_i ri加减任意值,费用为 w i w_i wi,求使得数列全为0的最小花费。
题解:
用差分数组表示这个序列,为了求通解,考虑最坏情况,即每一位都不为0
每一次操作在
l
i
l_i
li处
+
k
+k
+k,在
r
i
+
1
r_i+1
ri+1处
−
k
-k
−k
最后的目标是使这个差分数组变为全0,非0的都要转移到
n
+
1
n+1
n+1
可以联想到最小生成树,从
l
i
l_i
li向
r
i
+
1
r_i+1
ri+1建边,求最小费用即可
如果不能将所有点包含进去则无解
Code:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define db double
#define ull unsigned ll
#define pii pair<int,int>
#define pdd pair<db,db>
#define pll pair<ll, ll>
#define mem(a,b) memset(a,b,sizeof(a));
#define lowbit(x) (x&-x)
#define lrt nl,mid,rt<<1
#define rrt mid+1,nr,rt<<1|1
template <typename T>
inline void read(T &t){
t=0;
int f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-1;
ch=getchar();
}
while(isdigit(ch))
t=t*10+ch-'0',ch=getchar();
t*=f;
}
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const ll Inf=0x7f7f7f7f7f7f7f7f;
const int inf=0x7f7f7f7f;
const db eps=1e-5;
const db Pi=acos(-1);
const int maxn=1e5+10;
int pre[maxn];
struct node {
int from,to;
ll w;
bool operator<(const node &a) const {
return w<a.w;
}
} edge[maxn<<1];
int find(int x) {
return pre[x]==x?x:pre[x]=find(pre[x]);
}
int main(void) {
int n,m;
read(n),read(m);
for(int i=1;i<=n;i++) pre[i]=i;
for(int i=1;i<=m;i++) {
int a,b;
ll c;
read(a),read(b),read(c);
edge[i]={a,b,c};
}
sort(edge+1,edge+m+1);
ll ans=0,cnt=0;
for(int i=1;i<=m;i++) {
int x=find(edge[i].from),y=find(edge[i].to+1);
if(x==y) continue;
ans+=(ll)edge[i].w;
pre[x]=y;
++cnt;
}
printf("%lld\n",(cnt==n)?ans:-1);
return 0;
}