搭积木
【问题描述】
小明对搭积木非常感兴趣。他的积木都是同样大小的正立方体。
在搭积木时,小明选取 m 块积木作为地基,将他们在桌子上一字排开,中间不留空隙,并称其为第0层。
随后,小明可以在上面摆放第1层,第2层,……,最多摆放至第n层。摆放积木必须遵循三条规则:
规则1:每块积木必须紧挨着放置在某一块积木的正上方,与其下一层的积木对齐;
规则2:同一层中的积木必须连续摆放,中间不能留有空隙;
规则3:小明不喜欢的位置不能放置积木。
其中,小明不喜欢的位置都被标在了图纸上。图纸共有n行,从下至上的每一行分别对应积木的第1层至第n层。每一行都有m个字符,字符可能是‘.’或‘X’,其中‘X’表示这个位置是小明不喜欢的。
现在,小明想要知道,共有多少种放置积木的方案。他找到了参加蓝桥杯的你来帮他计算这个答案。
由于这个答案可能很大,你只需要回答这个答案对1000000007(十亿零七)取模后的结果。
注意:地基上什么都不放,也算作是方案之一种。
【输入格式】
输入数据的第一行有两个正整数n和m,表示图纸的大小。
随后n行,每行有m个字符,用来描述图纸 。每个字符只可能是‘.’或‘X’。
【输出格式】
输出一个整数,表示答案对1000000007取模后的结果。
【样例】
样例输入1
2 3
…X
.X.
样例输出1
4
样例说明1
成功的摆放有(其中O表示放置积木):
(1)
…X
.X.
(2)
…X
OX.
(3)
O.X
OX.
(4)
…X
.XO
样例输入2
3 3
…X
.X.
…
样例输出2
16
【数据规模约定】
对于10%的数据,n=1,m<=30;
对于40%的数据,n<=10,m<=30;
对于100%的数据,n<=100,m<=100。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
【代码】
-
考前做的最后一道题,当作练练手,比较简单,但是调bug调了好久,只希望正式迎考的时候不要遇到这种糟糕情况。
-
dfs剪枝后,代码如下:
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
#define maxn 100+5
using namespace std;
int n,m;
string mp[maxn];
int ans=0;
bool is_valid(int x,int y) {
for(int i=0;i<y;i++)
if(mp[x][i]=='O')
for(int j=i;j<y;j++)
if(mp[x][j]!='O') return false;
if(x==0) return true;
if(mp[x-1][y]!='O') return false;
return true;
}
void dfs(int x,int y) {
if(x>=n) {
// cout<<"ans="<<ans<<endl;
// for(int i=0; i<n; i++) cout<<mp[i]<<endl; cout<<endl;
ans++;
return;
}
int nxtx=x,nxty=y+1;
if(y-1==m) {
nxtx=x+1;
nxty=0;
}
if(mp[x][y]=='.') {
dfs(nxtx,nxty);
if(is_valid(x,y)) {
mp[x][y]='O';
dfs(nxtx,nxty);
mp[x][y]='.';
}
} else dfs(nxtx,nxty);
}
int main() {
cin>>n>>m;
for(int i=0; i<n; i++) cin>>mp[n-1-i];
dfs(0,0);
cout<<ans<<endl;
return 0;
}
2021-06-4 更新,感谢观看-