题目描述
牛牛总是睡过头,所以他定了很多闹钟,只有在闹钟响的时候他才会醒过来并且决定起不起床。从他起床算起他需要X分钟到达教室,上课时间为当天的A时B分,请问他最晚可以什么时间起床
输入描述:
每个输入包含一个测试用例。
每个测试用例的第一行包含一个正整数,表示闹钟的数量N(N<=100)。
接下来的N行每行包含两个整数,表示这个闹钟响起的时间为Hi(0<=A<24)时Mi(0<=B<60)分。
接下来的一行包含一个整数,表示从起床算起他需要X(0<=X<=100)分钟到达教室。
接下来的一行包含两个整数,表示上课时间为A(0<=A<24)时B(0<=B<60)分。
数据保证至少有一个闹钟可以让牛牛及时到达教室。
输出描述:
输出两个整数表示牛牛最晚起床时间。
示例1
输入
3
5 0
6 0
7 0
59
6 59
输出
6 0
思路:
一开始踩坑60进制加减和排序,这里不仅时间复杂度为n*logn,还容易出错
仔细思考一下,我们可以把小时+分钟转化为分钟数,这样我们只需要找到闹钟响的分钟数加起床分钟数与上课分钟数最近的一个就可以了
#include <iostream>
#include <algorithm>
#include <limits.h>
using namespace std;
struct ttime{
int h;
int m;
int total;
};
int main()
{
int n;
cin>>n;
struct ttime times[n];
for(int i=0;i<n;++i)
{
int th,tm;
cin>>th>>tm;
times[i].h=th;
times[i].m=tm;
times[i].total=th*60+tm;
}
int x,a,b;
cin>>x>>a>>b;
ttime ans={INT_MAX,INT_MAX,INT_MAX};
int res=INT_MAX;
for(int i=0;i<n;++i)
{
int temp=a*60+b;
if(times[i].total+x<=temp)
{
if(res>temp-x-times[i].total)
{
ans=times[i];
res=temp-x-times[i].total;
}
}
}
cout<<ans.h<<" "<<ans.m<<endl;
return 0;
}