回归算法与聚类算法实验

本文详细介绍了使用线性回归、K近邻回归和集成模型(随机森林)进行美国波士顿房价预测的实验,探讨了不同算法的预测效果。同时,通过K均值算法对手写体数字图像进行了聚类,展示了K=2时的最佳分类效果。实验总结强调了选择合适算法的重要性,并应用KMeans对大学生消费数据进行聚类,发现在K=5时聚类效果最佳。最后,提及随机森林在回归和分类任务中的表现。
摘要由CSDN通过智能技术生成

回归算法与聚类算法学习

一、目的

  • 1.熟练掌握线性回归算法
  • 2.了解并掌握K邻居回归算法
  • 3.了解并掌握集成模型(回归)算法
  • 4.熟练掌握K均值聚类算法
  • 5.熟练掌握回归评价方法
  • 6.熟练掌握聚类评价方法

二、题目内容及解析

按下面步骤要求完成实验:
1“使用线性回归算法实现美国波士顿房价预测算法”实例,并在Jupyter环境重现所有结果,要求对每一条Python语句均清楚了解其语法和用法,并重点理解回归算法的评价方法。包括代码【34-38】

1.代码:

from sklearn.datasets import load_boston
boston = load_boston()
print (boston.DESCR)
from sklearn.model_selection import train_test_split
import numpy as np
X = boston.data
y = boston.target
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state = 33,test_size = 0.5)
print("The max target value is",np.max(boston.target))
print("The min target value is",np.min(boston.target))
print("The average target value is",np.mean(boston.target))
from sklearn.preprocessing import StandardScaler
ss_X = StandardScaler()
ss_y = StandardScaler()


X_train.shape

X_test.shape

y_train=y_train.reshape(-1,1)

y_test=y_test.reshape(-1,1)

X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test= ss_y.fit_transform(y_test)
#线性回归

from sklearn.linear_model import LinearRegression 
lr = LinearRegression()
lr.fit(X_train,y_train)
lr_y_predict = lr.predict(X_test)
# SGD回归


from sklearn.linear_model import SGDRegressor
sgdr = SGDRegressor()
sgdr.fit(X_train,y_train)
sgdr_y_predict = sgdr.predict(X_test)
print('The value of default measurement of LinearRegression is',lr.score(X_test,y_test))


结果:

在这里插入图片描述

2“使用K近邻(回归)算法实现美国波士顿房价预测算法”实例,并在Jupyter环境重现所有结果,要求对每一条Python语句均清楚了解其语法和用法。包括代码【41-42】

代码: mport numpy as np
from sklearn import datasets
from sklearn.metrics import mean_squared_error,explained_variance_score,r2_score

from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值