kafka的架构图见此链接kafka架构理解
重要概念
-
partition (分区的概念):消息发送时都被推送到一个topic上,而topic是由分区(partition)构成
分区的原因:方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,
而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
可以提高并发,因为可以以Partition为单位读写. -
副本(replication)
同一个partition可能会有多个replication(对应server.properties 配置中的default.replication.factor=N)。没有replication的情况下,一旦broker 宕机,其上所有patition 的数据都不可被消费,同时producer也不能再将数据存于其上的patition。引入replication之后,同一个partition可能会有多个replication,而这时需要在这些replication之间选出一个leader,producer和consumer只与这个leader交互,其它replication作为follower从leader 中复制数据 -
消息写入过程
1producer先从zookeeper的"/brokers/…/state"节点找到该partition的leader
2)producer将消息发送给该leader
3)leader将消息写入本地log
4)followers从leader pull消息,写入本地log后向leader发送ACK
5leader收到所有ISR中的replication的ACK后,增加HW(high watermark,最后commit 的offset)
并向producer发送ACK -
消息消费方式
consumer采用pull的方式从broker中读取数据
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。对于Kafka而言,pull模式更合适,它可简化broker的设计,consumer可自主控制消费消息的速率,同时consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义 -
broker
一个服务器就是一个broker 一个集群由多个broker组成 一个broker可以容纳多个topic -
topic就是一个消息队列
-
broker保存消息
物理上把topic分成一个或多个partition(对应server.properties中的num.partitions=3配置),每个partiton物理上对应一个文件夹(该文件夹存储该partition的所有消息和索引文件) -
存储策略
无论消息是否被消费,kafka都会保留所有消息,有两种策略可以删除旧数据,- 基于时间 log.retention.hours =168
- 基于大小:log.retention.bytes=2122212121
注意:因为kafka读取特定消息的时间复杂度,为O(1) 即与文件大小无关,所以这里删除过期文件与提高kafka性能无关.