Tushare财经数据接口(三)案例——股票基本面统计

本文介绍如何利用Tushare财经数据接口获取并分析股票基本面数据,包括股票代码、名称、行业、地区、市盈率等关键指标。通过Python和Pandas处理数据,展示不同地区和行业的上市公司数量,并探讨上市日期与股票市场周期的关系。同时,计算了市场平均市盈率,讨论了加权市盈率的计算方法以及不同板块的市盈率和股票数量对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tushare财经数据接口

股票基本面统计

使用get_stock_basics()函数一次性下载所有股票基本面数据。这对观察股票的整体市场情况很有帮助。

import  tushare  as  ts
import  pandas as pd
import numpy as np
import  matplotlib.pyplot  as  plt

stock = ts.get_stock_basics()     # 下载股票基本面数据
stock.to_excel('stock.xlsx')     # 保存为电子表格
stock.shape                      # Out: (3678, 22)

在这里插入图片描述在这里插入图片描述
数据集规模为3823x22,每行是一支股票的基本数据。字段详情请查看Tushare的网站。数据集字段详情查看http://tushare.org 网站。本节用到的数据列有:code,股票代码;name,名称;industry,所属行业;area,地区;pe,市盈率;totals,总股本(亿元人民币);esp,每股收益;timeToMarket,上市日期。

下面从电子表格文件中读取数据,注意股票代码code列的处理细节。Pandas读取数据时,总是试图将数据自动转换为数值类型。深市类似’002522’的股票代码读入后,将丢失前导字符“00”,变为整数2522,因此读取时特意指定code字段为字符串。

df = pd.read_excel('stock.xlsx', dtype={
   'code': 'str'})   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值