bzoj 2326 数学作业(dp+矩阵快速幂)

题目:
Description
小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:给定正整数 N 和 M
要求计算 Concatenate (1 … N) Mod M 的值,其中 Concatenate (1 …N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数。
例如,N = 13, Concatenate (1 … N)=12345678910111213.小C 想了大半天终于意识到这是一道不可能手算出来的题目,
于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。
Input
只有一行且为用空格隔开的两个正整数N和M,
1≤N≤1018且1≤M≤109.
Output
仅包含一个非负整数,表示 Concatenate (1 … N) Mod M 的值。

Sample Input
13 13
Sample Output
4

题解
很显然能推出一个dp式,然后因为n十分巨大,1e18显然不能枚举递推,所以观察后采用矩阵快速幂来求这个递推式的第n项,不过这个矩阵快速幂有一项和 n 的数位位数有关,因此需要分段做矩阵快速幂求解。

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll mo;
const int maxn=5;
ll n,m;
struct ahaha
{
	ll a[maxn][maxn];     //一定要用long long存矩阵,否则在过程中会爆掉
	ahaha()
	{
		memset(a,0,sizeof a);
	}
	inline void build()
	{     //建造单位矩阵
		for(int i=1;i<=3;++i) a[i][i]=1ll;
	}
}a;
ahaha operator *(const ahaha &x,const ahaha &y)
{     //重载运算符
	ahaha z;
	for(int k=1;k<=3;++k)
		for(int i=1;i<=3;++i)
			for(int j=1;j<=3;++j)
				z.a[i][j]=(z.a[i][j]%mo+x.a[i][k]*y.a[k][j]%mo)%mo;
	return z;
}
ll k;
ahaha qk(ahaha a,ll b)
{
	ahaha ans;
	ans.build();
	while(b)
	{
		if(b&1) ans=ans*a;
		a=a*a;
		b=b>>1;
	}
	return ans;
}
int main()
{
	scanf("%lld%lld",&n,&m);
	mo=m;
	ahaha fin;
	fin.a[1][1]=0ll%mo;
	fin.a[1][2]=0ll%mo;
	fin.a[1][3]=1ll%mo;
	ll cnt=9ll;
	ahaha zz;zz.build();
	ahaha mid;
	mid.a[1][1]=10ll%mo;mid.a[2][1]=mid.a[2][2]=mid.a[3][1]=mid.a[3][2]=mid.a[3][3]=1ll;
	while(n>cnt)
	{
		ahaha zzz=qk(mid,1ll*(cnt-cnt/10ll));
		zz=zz*zzz;
		cnt=cnt*10ll+9ll;
		mid.a[1][1]=(mid.a[1][1]*10ll)%mo;
	}
	ahaha zzz=qk(mid,1ll*(n-cnt/10));
	zz=zz*zzz;
	fin=fin*zz;
	printf("%lld\n",fin.a[1][1]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值