- 博客(13)
- 资源 (4)
- 收藏
- 关注
原创 论文阅读笔记PipeCNN: An OpenCL-Based Open-Source FPGA Accelerator for Convolution Neural Networks
1.本文展示了一个基于开源OpenCL的卷积神经网络的现场可编程门阵列加速器。提出了一种高效的流水线内核硬件结构。还讨论了吞吐量和内存带宽优化方案。实现的设计在多个现场可编程门阵列平台上显示了可扩展的性能和成本。(Cyclone-V SEA5 SoC, Stratix-V GXA7 and Arria-10 AX115这三个平台)2.PipeCNN由一组OpenCL内核组成,这些内核通过使用Altera的OpenCL扩展通道进行级联。3.这种体系结构具有以下优点:1)级联内核形成一个深度流水线,可以执
2021-04-27 11:32:13 548 1
原创 证券投资学(周建国)学习笔记-2
第二篇 证券家族4兄弟1.债券时间分类:短期(<1年),中期(),长期(>10年)。时间越长,风险越高,收益越大发行分类:政府债券(政府发行,风险小,收益低),金融债券(商业银行,保险公司,风险略高收益也略高),企业债券(国有企业央企风险小,上市企业风险大:乐视)债券投资:熊市买债券,债券基金收益比债券好。垃圾债:堕落天使/小天使(慎重投资)2.股票本质:企业发给投资人的共担风险,共享收益的所有权的凭证。优先股:比普通股优先分红,利息固定,类似于债券,可能变成普通股决策权股
2021-04-26 10:49:42 759
原创 证券投资学(周建国)学习笔记
第一章 理论与框架笔记1.投资就是博弈,短线更是博弈2.股市铁律:一赢二平七亏3.《富爸爸穷爸爸》富人买入资产,穷人买入负债真正的资产有:不需要本人到场就可以正常运转的业务,自己的公司,股票,债券,基金,房地产,版税中产阶级和穷人一样,一生奋斗在恐惧和欲望的陷阱把钱当作员工,富人最后才买入奢侈品4.区别牛市和熊市牛市满仓,熊市空仓买基金5.核准制:除了够上市标准外,监管层审核,只给部分企业发通行证注册制:只要企业够上市标准,就可以上市(成熟市场)6.传统牛市:牛短熊长,没有大象负责
2021-04-25 21:12:34 1163
原创 从C到C++学习笔记
之前学习过C语言和Java语言,现在想了解一些C++的知识,这个笔记记录下C++与C的不同。小白水平,有错误的欢迎指正~课程来自B站:两小时从c到c++1.C++的头文件不必是.h结尾2.名字空间namespace为防止名字冲突(程序里出现同名变量),c++引入名字空间,用::运算符限定某个名字属于哪个空间使用的具体方法:1)using namespace X; //引入整个名字空间2)using X::name ; //使用单个名字3)X::name; //程序中加上名字空间前缀,如X::
2021-04-25 19:57:51 95
原创 自动化专业保研经验分享
入营前准备1.提前准备好成绩单、个人陈述、简历、自我介绍(中英文)、证件照(精神的那种)、邮件模板、四六级、成绩单等,申请一个正式邮箱。2.访问目标学校学院的官网,了解往年学校的夏令营情况、院校招生类型、毕业要求、转博政策等,一般每年需要的文件情况类似,准备好相应的材料,按时投递。3.关注保研类公众号,及时了解夏令营信息以及文书写作技巧,知乎上也有类似的课程。有的学校没有夏令营,只有预推免,想去这类院校建议提前邮件联系老师。4.了解目标院校老师的研究方向,对于自己感兴趣的老师可以去阅读老师近期发表的
2021-03-15 11:13:36 1582
原创 课程设计总结
Matrix4x4类的一些用法1.新建一个4x4的单位矩阵var NameOfVar=Matrix4x4.Identity;2.为Matrix4x4中的变量赋值1.定义后逐个赋值NameOfVar.M11=具体值; NameOfVar.M12=具体值;... NameOfVar.M44=具体值;注意:Matrix4x4的下标从1开始,没有第0行和第0列2.使用构造函数,参考官方API文档3.矩阵乘法运算官方API文档如下具体实例为t2=Matrix4x4.Multiply
2021-01-03 19:59:04 123
原创 ubuntu18.04环境下安装ROS系统遇到的bug总结
我的主要安装路线我在安装时找了 一篇教材,并以此为基础安装ros系统,在中途遇到问题解决后又返回到这个安装步骤上来(感谢作者),文章链接如下:主要安装路线接下来我将逐个记录遇到的问题,希望有所帮助1.sudo rosdep init报错报错的代码如下:ERROR: cannot download default sources list from:https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/sources.list.d
2021-01-02 16:14:30 2089 3
原创 论文阅读笔记:面向卷积神经网络的 FPGA 设计
降低卷积操作的快速算法常见算法:FFT、Winogard算法快速算法常见的三个步骤:将输入图像与卷积核转换到特殊域将转换后的数据进行点对点相乘将相乘的结果逆变换回时域二维FFT算法1.首先对二维矩阵的各行进行一维 FFT 操作, 而后对各列进行 FFT 操作2.一维FFT:不断将序列长度对半分,直至原始序列呗划分成多个两点的FFTWingoard算法利用矩阵运算,将矩阵相乘中重复的部分进行处理,以减少乘法的数量,提高运算的速度。FFT和Winogard算法的对比首先介绍矩阵乘法的
2020-12-28 20:43:11 464
原创 winogard一维运算参数详细推导
Winogard一维算法的理解一维卷积的定义标 标题参数的含义一维卷积的定义经典的例子:输入信号为: d=[d0,d1,d2,d3]T \ d=[d{_{0}},d{_{1}},d{_{2}},d{_{3}}]^{T} \, d=[d0,d1,d2,d3]T卷积核为: g=[g0,g1,g2]T \ g=[g{_{0}},g{_{1}},g{_{2}}]^{T} \, g=[g0,g1,g2]T卷积核指的是图像处理时,给定输入图像,输入图像中一
2020-12-24 12:14:46 434 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人