推荐书籍1:冯登国老师的《密码学原理与实践》(第三版)
一、一些基本概念
1.群
设G是一个非空集合,若在G上定义一个二元运算" · ",它满足
2.交换群
3.环
设R是一个非空集合,如果在R中有两种运算 +,⋅ 满足一下条件:
在许多抽象代数课本中,第(4)条不是环定义所必须的,不过在密码学讨论的环中一般都是包含有单位元的环。
4.模m剩余类环
5.
6.欧拉函数
7.欧拉函数的一种计算公式
假定
8.乘法逆
9.带余除法
二、Euclidean算法
- Euclidean算法又称为辗转相除法,是求给定两个非负整数的最大公约数(用gcd(a,b)表示),其中最为本质的是来源于多项式环中的带余除法
- 算法的主要步骤是令两个数中较大的数作为被除数,较小的数作为除数做带余除法,得到余数,除数和余数继续做带余除法,直到某一项中余数为0,那么商为最大公约数,换言之,是如下的一个过程。
#include <algorithm> // std::swap for c++ before c++11
#include <utility> // std::swap for c++ since c++11
int gcd(int a,int b)
{
if (a < b)
std::swap(a, b);
return b == 0 ? a : gcd(b, a % b);
}
但是这里有一个问题存留就是,怎么证明算法过程是对的,也就是,为什么这么做可以求得最大公约数,需要一个严格的数学证明。
10.在上述Euclidean算法中,有如下结论
11.Bezout定理的数学版本
#include <iostream>
using namespace std;
void Extended_Euclidean_Algorithm(int a, int b)
{
int a0 = a;
int b0 = b;
int t0 = 1;
int t = 0;
int s0 = 0;
int s = 1;
int q = a0 / b0;
int r = a0 - q*b0;
int temp = 0;
while (r > 0)
{
//迭代系数t
temp = t0 - q*t;
t0 = t;
t = temp;
//迭代系数s
temp = s0 - q*s;
s0 = s;
s = temp;
//求最大公约数
a0 = b0;
b0 = r;
q = a0 / b0;
r = a0 - q*b0;
}
r = b0;
cout << "最大公约数为:" << r << endl;
cout << "s的值为:" << s << endl;
cout << "t的值为:" << t << endl;
cout << "sa+tb=" << s*a + t*b << endl;
}
int main()
{
int a, b;
cin >> a >> b;
Extended_Euclidean_Algorithm(a, b);
system("pause");
return 0;
}
这里面最难理解的是两个迭代系数为什么要如此进行求解,为此我们需要如下一个定理。
11.2Bezout定理的计算机版本
12.
三、中国剩余定理
13.中国剩余定理
此解由下列式子给出:
四、其他有用的结果
14.元素和群的阶数
15.Lagrange定理
16.
17.Fermat小定理
详细证明见:密码学中模运算的逆元求解
18.模p的本原元素
19.
可以迅速的确定某个素数的本原元素个数,但是如果还需要计算它们的具体值,还需要根据定义验证所有的幂次值,这在素数非常大的情况下是很难的,有没有什么更快的方法呢?
20.