密码学数论基础知识

基本数论知识

定义1-1(半群): G G G是一个非空集合, ∗ * 是定义在 G G G上的一个二元运算, ( G , ∗ ) (G,*) (G,)被称作半群,如果 ( G , ∗ ) (G,*) (G,)满足下列条件:

  1. 封闭:对于任意的 a , b ∈ G , a,b \in G, a,bG, a ∗ b ∈ G a*b \in G abG
  2. 结合律:对于任意的 a , b , c ∈ G a,b,c \in G a,b,cG,有 a ∗ ( b ∗ c ) = ( a ∗ b ) ∗ c a*(b*c)=(a*b)*c a(bc)=(ab)c

定义1-2 (群): 半群 ( G , ∗ ) (G,*) (G,)被称为群,如果满足下列条件:

  1. 单位元:存在 e ∈ G e \in G eG, 对任意的 a ∈ G a \in G aG,对任意的 a ∈ G a \in G aG,有 e ∗ a = a e*a=a ea=a,并称元素 e e e G G G的左幺元。
  2. 逆元:对任意 a ∈ G a \in G aG,存在 a ′ ∈ G a' \in G aG,使得 a ′ ∗ a = e a'*a=e aa=e,并称元素 a ′ a' a a a a的左逆元。

定理1-1: G G G是一个群, e e e G G G的左幺元,则有:

  1. 对任意的 a ∈ G a \in G aG, b b b a a a的左逆元,则 b b b也是 a a a的右逆元,称 b b b a a a的逆元;
  2. e e e也是 G G G的右幺元,即对任意的 a ∈ G a \in G aG e ∗ a = a e*a=a ea=a,故 e e e G G G的右幺元。
  3. 对任意的 a ∈ G a \in G aG,其逆元唯一。

证明:(1)设 c c c b b b的左逆元
a ∗ b = e ∗ ( a ∗ b ) = ( c ∗ b ) ∗ ( a ∗ b ) = c ∗ ( b ∗ a ) ∗ b = c ∗ b = e a*b=e*(a*b)=(c*b)*(a*b)=c*(b*a)*b=c*b=e ab=e(ab)=(cb)(ab)=c(ba)b=cb=e

证毕;

(2)设 b b b a a a 的逆元,则有:

a ∗ e = a ∗ ( b ∗ a ) = ( a ∗ b ) ∗ a = e ∗ a a*e=a*(b*a)=(a*b)*a=e*a ae=a(ba)=(ab)a=ea

证毕;

(3)设 b , d b,d b,d a a a的逆元,则有:
b = b ∗ e = b ∗ ( a ∗ d ) = ( b ∗ a ) ∗ d = e ∗ d = d b=b*e=b*(a*d)=(b*a)*d=e*d=d b=be=b(ad)=(ba)d=ed=d

证毕;

定义1-3 (有限群): ( G , ∗ ) (G,*) (G,)的元素个数 ∣ G ∣ |G| G被称为群的阶,如果 ∣ G ∣ |G| G有限,则称 G G G为有限群。

定义1-4(交换群): 如果群中的二元运算 ∗ * 还满足交换律,即对任意 a , b ∈ G a,b \in G a,bG a ∗ b = b ∗ a a*b=b*a ab=ba,我们称 G G G是一个交换群或阿贝尔群,否则称为非交换群。

定理1-2: G G G是一个群, a , b ∈ G a,b\in G a,bG, 则方程 a x = b ax=b ax=b y a = b ya=b ya=b有唯一的解。

证明:对 a x = b ax=b ax=b两边同时左乘 a − 1 a^{-1} a1,则有 a − 1 ( a x ) = a − 1 b a^{-1}(ax)=a^{-1}b a1(ax)=a1b,所以得到解为 x = a − 1 b x=a^{-1}b x=a1b a − 1 a^{-1} a1是唯一的,因此该解是唯一解,同理,第二个方程的唯一解为 y = b a − 1 y=ba^{-1} y=ba1

证毕;

定理1-3: 对正整数 m m m n n n,群中元素a的幂满足:

  1. ( a − 1 ) n = ( a n ) − 1 (a^{-1})^n=(a^n)^{-1} (a1)n=(an)1
  2. a n + m = a n a m a^{n+m}=a^na^m an+m=anam
  3. ( a n ) m = a n m (a^n)^m=a^{nm} (an)m=anm

定义1-5(阶): 在群 G G G中,对元素 a a a来说,使得 a n = 1 a^n=1 an=1的最小正整数 n n n称为元素 a a a的阶,记为 o r d ( a ) ord(a) ord(a)。如果不存在这样的正整数,那么我们称 a a a为无限阶元素。

定理1-4: 群中 G G G元素 a a a的阶为 k k k,如果 a n = 1 a^n=1 an=1,则 k ∣ n k|n kn

证明:设 n = q k + r n=qk+r n=qk+r,其中 0 ≤ r < k 0 \le r \lt k 0r<k,所以
1 = a n = a q k + r = ( a k ) q a r = a r 1=a^n=a^{qk+r}=(a^k)^qa^r=a^r 1=an=aqk+r=(ak)qar=ar
由于 r r r取不到 k k k,所以 r r r只能等于0.

证毕;

定理1-5: 有限群 G G G中的元素 a a a的阶必为有限数。

定义 2-1 : 设R是一个非空集合,在 R R R上定义了加法和乘法两种代数运算,分别记为“+”和“·”。如果 R R R具有如下性质:

  1. R R R对于加法是一个交换群。
    a. R R R关于加法封闭,即任意元素 a , b ∈ R a,b \in R a,bR,有 a ⋅ b ∈ R a \cdot b \in R abR
    b. R R R关于加法结合律成立。即对于 R R R中任意元素 a + ( b + c ) = ( a + b ) + c a+(b+c)=(a+b)+c a+(b+c)=(a+b)+c
    c. R R R存在单位元。即 R R R中存在一个元素 e e e R R R中任意元素 a a a满足 a + e = a a+e=a a+e=a
    d. R R R中存在逆元。对 R R R中任意元素 a a a, R R R存中都存在一个元素 b b b使得 a + b = e a+ b =e a+b=e
    f. R R R关于加法满足交换律, a + b = b + a a+b=b+a a+b=b+a
  2. R R R对于乘法封闭。
  3. 乘法满足结合律。即对于即对于 R R R中任意元素 a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a\cdot(b\cdot c)=(a\cdot b)\cdot c a(bc)=(ab)c
  4. 分配律成立,即对于 R R R中任意元素 有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a\cdot(b+c)=a\cdot b+a\cdot c a(b+c)=ab+ac
    则称 ( R , + , ⋅ ) (R,+,\cdot) (R,+,)为一个环。

这里对环的定义也就是说,R对加法是一个交换群,对乘法的要求是一个半群。对乘法的单位元,和逆元没有限制。

ps.如果环 R R R还满足交换律, a ⋅ b = b ⋅ a a\cdot b = b \cdot a ab=ba则称R是一个交换环。

由于这里的有两种运算,单位元的概念容易混淆,所以我们对乘法称作单位元或幺元,对于加法我们称其为零元。

定义2-2 : 如果在一个环 R R R a ≠ 0 , b ≠ 0 a\ne0,b\ne0 a=0,b=0,但 a b = 0 ab=0 ab=0, 则称 a a a是这个环的一个左零因子, b b b是这个环的一个右零因子。

这个的定义对于实数不满足,左零因子不一定等于右零因子,因为可能为矩阵。若左零因子等于右零因子,则统称为零因子。 非交换环的左零因子或右零因子也可能成为零因子。如果一个环 R R R没有零因子,则称 R R R为无零因子环

定理2-1: 在没有任何零因子的环里消去律成立,即如果 a ≠ 0 a\ne0 a=0,则
a b = a c ⇒ b = c ab=ac \Rightarrow b=c ab=acb=c
b a = c a ⇒ b = c ba=ca \Rightarrow b=c ba=cab=c
反之,若上面的消去律满足任意一个,则环内没有零因子。

定义2-3: 如果一个环 R R R的子集 S S S对于 R R R中的运算也构成环,则称 S S S R R R的子环, R R R S S S的扩环。

**定义2-4:**如果一个环 R R R满足下列条件:

  1. R R R是交换环。
  2. 存在单位元,且 1 ≠ 0 1\ne0 1=0
  3. 没有零因子。
    则称 R R R是一个整环。

定义2-5: 如果一个环 R R R存在非零元,而且全体非零元构成一个乘法群,则称 R R R为除环。

定义2-6: 如果一个环 F F F存在非零元,而且全体非零元构成一个乘法交换群,则称 F F F为域。 ⇔ \Leftrightarrow 交换除环称为域。

**定义 2-7:**如果 ( R , + , ⋅ ) (R,+,\cdot) (R,+,) ( R ′ , + , × ) (R',+,\times) (R,+,×)是两个环,如果存在 R R R R ’ R’ R的映射 f f f,加法和乘法都在 f f f下得到保持,即对于任意 a , b ∈ R a,b\in R a,bR,都有
f ( a b ) = f ( a ) f ( b ) , f ( a + b ) = f ( a ) + f ( b ) f(ab)=f(a)f(b) ,f(a+b)=f(a)+f(b) f(ab)=f(a)f(b),f(a+b)=f(a)+f(b)
则称 f f f R R R R ’ R’ R的同态映射。如果 f f f是单射,则称 f f f是单同态。如果 f f f是满射,则称 f f f是满同态。如果 f f f是一一映射,则称 f f f是同构。

定理 2-2: f f f是环 R R R R ′ R' R的同态,则有

  1. f ( 0 ) = 0 ′ f(0)=0' f(0)=0
  2. 对于任意的 a ∈ R a \in R aR有, f ( − a ) = − f ( a ) f(-a)=-f(a) f(a)=f(a)
  3. 如果R有单位元,则R’也有单位元,且 f ( 1 ) = 1 ′ f(1)=1' f(1)=1
  4. 如果R有单位元,而且 a ∈ R a\in R aR可逆,则 f ( a ) f(a) f(a)在R’中同样可逆
  5. 如果R是交换环,则R’也是交换环。

定理2-3: 假设两个环 R , R ′ R,R' R,R同构,则
R是整环(除环\域),R’也是

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值