0x01 位运算

快速幂

思路

对于 a b a^b ab而言,若是b特别大的时候就不可以用O(n)的算法求得。特此,引入了快速幂。

由于唯一分解定理,每一个数字都可以被分解成为若干指数不重复的2得次幂的和。

所以,可以将指数b进行二进制拆分,从而达到快速求幂的结果。

代码

代码如下:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;//注意应该是全部数据都开long long[保险起见]

inline ll power(ll a,ll b,ll p)
{
	ll ans=1%p;
	for(;b;b>>=1)//因为b是指数,所以应该是b被分解
	{
		if(b&1)	ans=ans*a%p;//如果有模数p的话,那么在这里就不可以写成是ans*=a%p,下同。 
		a=a*a%p;
	}
	return ans;
}

int main()
{
	
	ll a,b,p;
	cin>>a>>b>>p;
	cout<<power(a,b,p)<<endl;
	return 0;
}

64位整数乘法

大整数乘法。

思路

第一种方法:二进制的思想。

inline ll mul(ll a,ll b,ll p)//mul是乘法口令的意思 
{
	ll ans=0;
	for(;b;b>>=1)
	{
		if(b&1)	ans=(ans+a)%p;//这里体现的是乘法分配律原则,所以这里会是ans+a
		a=a*2%p;
	}
	return ans;
}

第二种方法:从mod的基本含义出发

(找到一个数的余数)

a*b%c=a×b-[a×b/c]×c ([x]表示x下取整)

inline ll mul(ll a,ll b,ll p)//mul是乘法口令的意思 
{
	a%=p; b%=p;
	ll c=(long double)a*b/p;//找到在向下取整的意义下的最大的商
	ll ans=a*b-c*p;
	if(ans<0)	ans+=p;
	else if(ans>p)	ans-=p;
	return ans; 
}

这种算法则是完全不考虑是否会在计算的时候溢出。不溢出正好,溢出就不要了反正对你的答案没有影响。 在最后的时候还是要去判断ans的值,少了加上,多了减去。


最短Hamilton路径

Hamilton路径的介绍——百度百科

哈密顿图(哈密尔顿图)(英语:Hamiltonian graph,或Traceable graph)是一个无向图,由天文学家哈密顿提出。

指定的起点前往指定的终点途中经过所有其他节点且只经过一次。(这里是区别于其他的概念的地方)

在图论中是指含有哈密顿回路的图,闭合的哈密顿路径称作哈密顿回路(Hamiltonian cycle),含有图中所有顶点的路径称作哈密顿路径(Hamiltonian path)。——百度百科

题目:给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

思路:用二进制数字01表示当前点的状态(走过或者是没有走过)。

状态转移方程: f [ i ∣ ( 1 &lt; &lt; k ) ] [ k ] = m i n ( f [ i ∣ ( 1 &gt; &gt; k ) ] [ k ] , f [ i ] [ j ] + a [ j ] [ k ] ) f[i|(1&lt;&lt;k)][k]=min(f[i|(1&gt;&gt;k)][k],f[i][j]+a[j][k]) f[i(1<<k)][k]=min(f[i(1>>k)][k],f[i][j]+a[j][k])

第一维使用一个数字的二进制表示已经到到达过了的点,第二维是当前你刚刚或者是即将到达的点。

来自于chdy的代码:

	memset(f,10,sizeof(f));
	f[1][0]=0;
	for(int i=1;i<(1<<n);i++)//复杂度2^20*400==419430400
	{
		for(int j=0;j<n;j++)//枚举你在i的状态时刚刚到达的点
		{
			if((i&(1<<j))==0)continue;//说明j这个点不在i状态所选的范围内
			for(int k=0;k<n;++k)
			{
				if((i>>k)&1)continue;//k这个点已经被选过了 
				f[i|(1<<k)][k]=min(f[i|(1<<k)][k],f[i][j]+a[j][k]);//i|(1>>k)的意思是将i在二进制表示下的第k位赋值为1 
			}
		}
	}
	put(f[(1<<n)-1][n-1]);//确保了起点是0,终点是n-1 

来自于蓝胖子的代码:

inline int hamilton(int n)
{
	memset(f,0x3f,sizeof(f));
	f[1][0]=0;//第一个点是不需要花费的,因为到达第一个点不需要边上的花费 
	for(int i=1;i<(1<<n);i++)//i的二进制数表示的是n-1个点到达或者是不到达的方案,所有i的二进制的位数一定有n-1位 
		for(int j=0;j<n;++j)//枚举的是在i这种状态下的最后一个到达的点。
			if((i>>j)&1)//判断在i的状态下点j是否被用到,如果点j被用到的话,就可以进行下面的更新操作【松弛操作】 
				for(int k=0;k<n;++k)//用点k来更新[松弛]点j 
					if((i^(1<<j))>>k&1)//如果说是点k不同于点j,而且点k在i这种状态下被经过,就说明点k可以来更新点j 
						f[i][j]=min(f[i][j],f[i^(1<<j)][k]+a[k][j]);
	return f[(1<<n)-1][n-1];
}

N i c e Nice Nice……

完……

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值