裴蜀定理

简要理解

对于形如 a x + b y = c ax+by=c ax+by=c的这样一个二元一次不定方程,我们由裴蜀定理知道:
a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)为最小解
而后的每个解都是 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)的倍数

两个已知量

先有两已知量a,b,根据裴蜀定理我们有:
存在x,y满足 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)
相关证明略,类似辗转相除
然后这个方程可以用扩展欧几里得去求解
这个式子我们变换一下:
gcd ⁡ ( a , b ) = b y + ( a % b + b ∗ ⌊ a b ⌋ ) x \gcd(a,b)=by+(a\%b+b*\lfloor\frac{a}{b}\rfloor)x gcd(a,b)=by+(a%b+bba)x
gcd ⁡ ( a , b ) = ( a % b ) x + ( y + b ⌊ a b ⌋ ∗ x ) b \gcd(a,b)=(a\%b)x+(y+b\lfloor\frac{a}{b}\rfloor*x)b gcd(a,b)=(a%b)x+(y+bbax)b
贴个扩展欧几里得的代码

typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll gcd = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

n个已知量

类似两个位置量,设n个未知量分别为 a 1 , a 2 … … a n a_1,a_2……a_n a1,a2an,我们有:
存在 x 1 , x 2 , … … , x n x_1,x_2,……,x_n x1,x2,,xn使 a 1 ∗ x 1 + a 2 ∗ x 2 + … … + a n ∗ x n = gcd ⁡ ( a 1 , … … , a n ) a_1*x_1+a_2*x_2+……+a_n*x_n=\gcd(a_1,……,a_n) a1x1+a2x2++anxn=gcd(a1,,an)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值