算法设计——有 2*n 的一个长方形方格,用一个1*2 的骨牌铺满方格。

本文探讨了使用1x2骨牌铺满2xn长方形方格的算法,通过递推公式解决了任意n值时的铺法总数问题。文章首先给出了n=1和n=2时的基础情况,随后通过分析得出当n大于2时,铺法总数等于前两项之和,最终通过C++代码实现了该算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有 2n 的一个长方形方格,用一个12 的骨牌铺满方格。

在这里插入图片描述
编写一个程序,试对给出的任意一个n(n>0), 输出铺法总数。
【算法分析】
 (1)当n=1时,
只能是一种铺法,铺法总数有示为x1=1。
 (2)当n=2时:
骨牌可以两个并列竖排,也可以并列横排,再无其他方法,如下左图所示,因此,铺法总数表示为x2=2;
在这里插入图片描述
(3)当n=3时:

当n=3时的排列骨牌的方法数是n=1和n=2排列方法数的和。
在这里插入图片描述

(4)当n=4时:
在这里插入图片描述

#include<iostream>
using namespace std;
int main(){
  int n,i,j,f[101];
  cout<<"input n:";                     //输入骨牌数
  cin>>n;
  f[1]=1;f[2]=2;  //边界条件
  cout<<“f[1]="<<f[1]<<endl;
  cout<<“f[2]="<<f[2]<<endl;
  for (i=3;i<=n;i++){               //递推过程
      f[i]=f[i-1]+f[i-2];
      cout<<“f["<<i<<"]="<<f[i]<<endl;
   }
} 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值