- 博客(11)
- 收藏
- 关注
原创 JAVA类型转换&反射
前两种方法必须明确类型,第三种只要提供这种类型的字符串,拓展性更强,不需要知道类,只要提供字符串按照配置文件加载即可;:获取本类以及父类中指定的属性(只能获取公有的):获取本类中指定的属性(私有、公有都可以获取)getSimpleName(),获取简称。获取本类所有的成员方法(公有、私有)获取本类指定的成员方法(公有、私有)获取本类指定的构造(公有或者私有):获取本类中所有的属性(公有、私有)获取本类以及父类所有的公共成员方法。:获取本类以及父类所有的公共属性。getName(),获取名称。
2023-07-21 17:55:05
676
1
原创 JAVA注解梳理
*MVC设计模式:M(model)指模型,V(view)指视图层,C(controller)指控制层。M代表模型一般指service和DAO;view代表视图一般指页面eg:jsp,html ftl等;C代表控制器,比如springMVC 中的controller或struts2中的action。
2023-07-21 15:21:23
213
1
原创 Neural Networks and Deep Learning读书笔记--卷积神经网络原理代码(network3)
卷积网络代码network3.py整体看来,程序结构类似于 network2.py,尽管细节有差异,因为我们使用了 Theano。FullyConnectedLayer 类首先我们来看 FullyConnectedLayer 类,这类似于我们之前讨论的那些神经网络层。下面是代码:class FullyConnectedLayer(object): def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
2020-08-16 16:56:00
463
原创 Neural Networks and Deep Learning读书笔记--卷积神经网络应用:手写数字识别
已经明白了卷积神经网络后面的核心思想,想要通过实现一些卷积网络,并将它们应用于 MNIST 数字分类问题,来看看它们如何在实践中工作。使用的程序是 network3.py,它是前面章节开发的 network.py 和 network2.py 的强化版本。程序 network.py 和 network2.py 是用 Python 和矩阵库 Numpy 实现的。这些程序从最初的原理工作,并致力于反向传播、随即梯度下降等细节。 network3.py 使用一个称为 Theano 的机器学习库[1]。使用 The
2020-08-16 16:10:36
365
原创 Neural Networks and Deep Learning读书笔记--神经网络改进原理代码(network2)
和 network.py 一样,主要部分就是 Network 类了,用这个来表示神经网络。使用一个 sizes 的列表来对每个对应层进行初始化,默认使用交叉熵作为代价 cost 参数:class Network(object): def __init__(self, sizes, cost=CrossEntropyCost): self.num_layers = len(sizes) self.sizes = sizes self.default_
2020-07-25 19:17:03
467
原创 Neural Networks and Deep Learning读书笔记--神经网络调参
如何选择神经网络的超参数在之前的实验中我们靠运气选择了一些参数设置:30个隐层,小批量数据大小为10,迭代训练30轮,使用交叉熵损失函数。但是,在使用学习速率=10.0而规范化参数 =1000.0,我们的一个运行结果如下:>>> import mnist_loader>>> training_data, validation_data, test_data = \... mnist_loader.load_data_wrapper()>>>
2020-07-25 17:26:51
240
原创 Neural Networks and Deep Learning读书笔记--神经网络改进实验
损失函数改进:交叉熵函数将损失函数有之前>>> import mnist_loader>>> training_data, validation_data, test_data = \... mnist_loader.load_data_wrapper()>>> import network2>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntrop
2020-07-25 09:21:45
291
原创 Neural Networks and Deep Learning读书笔记--神经网络应用:手写数字识别
神经网络应用于MNIST数据手写数字识别加载MNIST数据,用下面所描述的一小段辅助程序mnist_loader.py来完成。用于存储MNIST数据的数据结构在文档字符串中进行了描述-它是简单的内容、元组和Numpy ndarray对象的列表(如果您不熟悉ndarray,可以将它们看作向量):"""mnist_loader\~~~~~~~~~~~~A library to load the MNIST image data. For details of the datastructures
2020-07-23 21:38:59
281
原创 Neural Networks and Deep Learning读书笔记--神经网络原理代码(network1)
Chapter1使用神经网络来识别手写数字:1.6实现数字分类的网络神经网络代码的核心是一个Network类,如下是我们用来初始化一个Network对象的代码:class Network(object): def __init__(self, sizes): self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in
2020-07-12 23:29:46
761
原创 PhysioNet challenge2015 数据库
每条记录五分钟长(或五分钟+30秒附加数据),采样率为250hz,共有560250=75000个采样点。若加上30s的附加信号,则共有(5*60+30)*250=82500个采样点。每条记录包含两个文件,一个.dat和一个.hea文件。.mat:数据文件,保存着心电信号。.hea:头文件,保存着这条记录的附加信息。头文件(.hea)可以直接打开,数据文件不可直接打开,强行记事本打开后看到的都是乱...
2020-03-30 14:44:19
1171
1
原创 wfdb—心电信号降采样
wfdb—心电信号降采样想做一下在做本科毕设中遇到的一点问题,记录一下一个新手小白上手信号处理的过程啦!在完成PhysioNet中心电信号的加载之后,首先对信号进行一些预处理。因为比赛中提供的代码和其他前十名论文提供的都是matlab版本(Matlab里面对信号处理的函数真的方便好多),但是还是想完全用python来做。翻了半天发现 wfdb库里面还是有一些可以用的函数。wfdb.pro...
2020-03-21 10:49:39
2200
8
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人