单目标灰狼和多目标灰狼特征选择算法

本文介绍了灰狼优化算法(GWO)的基本概念、优缺点,并对其在特征选择中的应用进行了深入探讨,特别是在多目标优化问题上的扩展——多目标灰狼优化算法(MOGWO)。MOGWO具有全局搜索能力、快速收敛和分布均匀的Pareto解集等特点,但也存在参数敏感性和局部收敛的风险。
摘要由CSDN通过智能技术生成

基本概念

灰狼算法(Grey Wolf Optimizer,GWO)是一种经典的群体智能优化算法,Mirjalili等人[1]模仿自然界中灰狼严格的社会优势水平和群体狩猎机制设计了灰狼优化(GWO)算法。GWO算法中的灰狼有四个层次如Fig1所示,包括α狼、β狼、δ狼和ω狼。α狼是首领,主要负责为整个种群建立行为规则。β狼和δ狼是α狼的下属,主要职责是帮助和跟踪α狼。狼是最低级的狼,必须服从其他领头狼。GWO的优化过程包括灰太狼社会分层、跟踪猎物、包围猎物和攻击猎物。

GWO优点

  • 参数少
  • 结构简单,易于实现
  • 能自动调整收敛因子和信息反馈机制
  • 能够在全局搜索与局部开发中实现平衡

GWO缺点

  • 易早熟
  • 易陷入局部最优
Fig1:灰狼的等级制度(统治地位自上而下递减)标题

 GWO特征选择算法研究综述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值