基本概念
灰狼算法(Grey Wolf Optimizer,GWO)是一种经典的群体智能优化算法,Mirjalili等人[1]模仿自然界中灰狼严格的社会优势水平和群体狩猎机制设计了灰狼优化(GWO)算法。GWO算法中的灰狼有四个层次如Fig1所示,包括α狼、β狼、δ狼和ω狼。α狼是首领,主要负责为整个种群建立行为规则。β狼和δ狼是α狼的下属,主要职责是帮助和跟踪α狼。狼是最低级的狼,必须服从其他领头狼。GWO的优化过程包括灰太狼社会分层、跟踪猎物、包围猎物和攻击猎物。
GWO优点
- 参数少
- 结构简单,易于实现
- 能自动调整收敛因子和信息反馈机制
- 能够在全局搜索与局部开发中实现平衡
GWO缺点
- 易早熟
- 易陷入局部最优