群体智能优化算法

群体智能优化算法

群体智能(SI)源于对以蚂蚁、蜜蜂等为代表的社会性昆虫的群体行为的研究,群居性生物通过协作表现出的宏观智能行为特征。群体智能算法有粒子群优化算法(PSO)、蚁群优化算法(ACO)、人工蜂群优化算法(ABC)、差分进化算法(DE)、引力搜索算法(GSA)、萤火虫算法(FA)、蝙蝠算法(BA)、布谷鸟优化算法(COA)、灰狼优化算法(GWO)、鲸鱼优化算法(WOA)和Salp群算法(SSA)等等

粒子群优化算法(PSO)

粒子群优化是一种强大的基于群体智能的优化方法,这种优化方法的灵感来自于鸟类和鱼类的集体行为,最近已被大量研究用于优化最终特征子集的选择。

研究现状

改进方式 目标数 目的 应用场景
将wrapper PSO和粗糙集理论相结合 单目标 提高疾病诊断的分类精度 医学应用
粒子群优化方法与支持向量机相结合 单目标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值