题目描述
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
暴力递归
分析: 卖出股票后,你无法在第二天买入股票,所以需要是设置一个标志位来表示当前位置应该买入还是卖出。
public int maxProfit(int[] prices) {
return process(prices, 0, 1);
}
/**
* 暴力递归
* prices[0···index] 表示已经做过了选择,price[index ···] 表示没有做过选择
* @param prices 固定参数
* @param index 数组下标
* @param flag 标识当前位置能买入还是卖出 (true 标识可以买入,false标识可以卖出)
* @return
*/
private int process(int[] prices, int index, int flag) {
if (index >= prices.length) {
return 0;
}
int in = 0;
int out = 0;
if (flag == 1) {
// 买入
in = process(prices, index + 1, 0) - prices[index];
} else {
// 卖出
out = process(prices, index + 2, 1) + prices[index];
}
// 表示冷冻期
int stay = process(prices,index + 1, flag);
return Math.max(Math.max(in,out), stay);
}
将暴力递归转化为记忆化搜索
分析: 从暴力递归中可以看出有两个变量,分别为index 和 flag,所以应该设置二维dp数组
注意: flag虽是标识位,但是仍然是变量,需要考虑进去。。
public int maxProfit2(int[] prices) {
int N = prices.length;
int [][] dp = new int[N + 2][2];
for (int i = 0; i < N + 2; i++) {
for (int j = 0; j < 2; j++) {
dp[i][j] = -1;
}
}
return process2(prices, 0, 1, dp);
}
/**
* 记忆化搜索
* prices[0···index] 表示已经做过了选择,price[index ···] 表示没有做过选择
* @param prices 固定参数
* @param index 数组下标
* @param flag 标识当前位置能买入还是卖出 (true 标识可以买入,false标识可以卖出)
* @return
*/
private int process2(int[] prices, int index, int flag, int[][] dp) {
if (dp[index][flag] != -1) {
return dp[index][flag];
}
if (index >= prices.length) {
dp[index][flag] = 0;
return dp[index][flag];
}
int in = 0;
int out = 0;
if (flag == 1) {
// 买入
in = process2(prices, index + 1, 0, dp) - prices[index];
} else {
// 卖出
out = process2(prices, index + 2, 1, dp) + prices[index];
}
// 冷冻期
int stay = process2(prices,index + 1, flag, dp);
dp[index][flag] = Math.max(Math.max(in, out), stay);
return dp[index][flag];
}
将暴力搜索更改为动态规划
/**
* 动态规划
* @param prices
* @return
*/
public int dpWay(int[] prices) {
int N = prices.length;
int[][] dp = new int[N + 2][2];
for (int i = N - 1; i >= 0; i--) {
for (int j = 1; j >= 0; j--) {
int in = 0;
int out = 0;
if (j == 1) {
in = dp[i + 1][0] - prices[i];
} else {
out = dp[i + 2][1] + prices[i];
}
int stay = dp[i + 1][j];
dp[i][j] = Math.max(Math.max(in, out), stay);
}
}
return dp[0][1];
}
结果:
暴力递归超时,剩下两种方法ac