Leetcode 刷题 动态规划

343. 整数拆分

动规五部曲,分析如下:

1.确定dp数组(dp table)以及下标的含义

        dp[i]:分拆数字i,可以得到的最大乘积为dp[i]

2.确定递推公式

        可以想 dp[i]最大乘积是怎么得到的呢?

        其实可以从1遍历j,然后有两种渠道得到dp[i].

        一个是j * (i - j) 直接相乘。

        一个是j * dp[i - j],相当于是拆分(i - j)

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

        所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

3. dp的初始化

        dp[2] = 1;

4. 确定遍历顺序

        dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。 

class Solution {
    public int integerBreak(int n) {
        int[] dp = new int[n+1];
        dp[2] = 1;
        for(int i = 3; i < n+1; i++){
            for(int j = 1; j < i - 1; j++){
                dp[i] = Math.max(dp[i], Math.max((j * (i-j)), j * dp[i-j]));
            }
        }
        return dp[n];
    }
}

 

96. 不同的二叉搜索树

1.确定dp数组(dp table)以及下标的含义

        dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

2.确定递推公式

        看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

        递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

3.dp数组如何初始化

        初始化dp[0] = 1

4.确定遍历顺序

       从前往后

class Solution {
    public int numTrees(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        dp[1] = 1;

        for(int i = 2; i <= n; i++){
            for(int j = 1; j <= i; j++){
                dp[i] += dp[j-1] * dp[i-j]; 
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值