机器学习与深度学习实战
机器学习以及深度学习的实战笔记
Leonadoice
不会翻译的程序员不是一个好的设计师。欢迎关注个人微信公众号:Ice的小窝。
展开
-
一个完整的机器学习项目需要哪些步骤
3 特征工程特征工程一般包括:预处理、特征处理、特征选择和特征监控等工作。2020.11.3 今天先过一下编程 之后再回过头来整理这些 会比较具象原创 2020-12-16 20:37:59 · 1425 阅读 · 0 评论 -
深度学习 | 梯度检验 实践练习
本文是吴恩达《深度学习》L2W1的编程作业2。本文是跟着参考资料的步骤过了一遍作业,做到加深理解的目的,其中所有需要下载的资料都在第二条参考资料里面。我的实验环境是天池的NoteBook总任务初始化参数,详见上篇《深度学习 | 初始化参数 实践练习》1.1 使用0来初始化参数1.2 使用随机数来初始化参数1.3 使用抑梯度异常(如梯度消失和梯度爆炸)初始化参数正则化模型,详见上篇《深度学习 | 正则化 实践练习》2.1 使用二范数对二分类模型正则化,尝试避免过拟合2.2 使用随机删除原创 2020-11-26 11:19:32 · 608 阅读 · 0 评论 -
深度学习 | 正则化 实践练习
本文是吴恩达《深度学习》L2W1的编程作业2。本文是跟着参考资料的步骤过了一遍作业,做到加深理解的目的,其中所有需要下载的资料都在第二条参考资料里面。我的实验环境是天池的NoteBook总任务初始化参数,详见上篇《深度学习 | 初始化参数 实践练习》1.1 使用0来初始化参数1.2 使用随机数来初始化参数1.3 使用抑梯度异常(如梯度消失和梯度爆炸)初始化参数正则化模型2.1 使用二范数对二分类模型正则化,尝试避免过拟合2.2 使用随机删除节点方法精简模型,尝试避免过拟合梯度校验原创 2020-11-26 10:48:53 · 458 阅读 · 1 评论 -
LSTM基本原理及实践(下)(更新中)
本文内容是上文《LSTM基本原理及实践(上)》的实战篇:手动实现LSTM网络并对文本数据进行分类。本文的内容和资料是来自2020 Google DevFest TensorFlow CodeLab活动中段清华老师的分享~任务描述基本任务:不使用TF官方的LSTM层,实现一个自定义的、继承自tf.keras.Layer的LSTM层进阶任务:基于以上任务,实现一个直接以字符串为输入的文本分类模型终极任务:基于以上模型,训练互联网情感分析数据集INEWS,并给出训练后的准确率。数据集各系统原创 2020-11-17 20:01:56 · 554 阅读 · 0 评论 -
深度学习 | 初始化参数 实践练习
本文是吴恩达《深度学习》L2W1的编程作业1。本文是跟着参考资料的步骤过了一遍作业,做到加深理解的目的,其中所有需要下载的资料都在第二条参考资料里面。我的实验环境是天池的NoteBook总任务初始化参数1.1 使用0来初始化参数1.2 使用随机数来初始化参数1.3 使用抑梯度异常(如梯度消失和梯度爆炸)初始化参数正则化模型2.1 使用二范数对二分类模型正则化,尝试避免过拟合2.2 使用随机删除节点方法精简模型,尝试避免过拟合梯度校验3.1 对模型使用梯度校验,检测它是否在梯度下降原创 2020-11-17 12:28:57 · 582 阅读 · 0 评论 -
LSTM基本原理及实践(上)
什么是LSTM?原理是什么?能干什么?有没有参考的论文能实现比较好玩的东西?Long Short-Term Memory 长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长时间的重要事件。参考资料:长短期记忆网络(Long Short-Term Memory,LSTM)及其变体双向LSTM和GRUDIVE INTO DEEP LEARNING(6.8. 长短期记忆(LSTM))最好不要只是博客和文字,最好有实例...原创 2020-11-10 20:20:02 · 1411 阅读 · 0 评论 -
深度学习 | 一步步搭建多层神经网络
吴恩达《深度学习》L1W4作业1此篇的任务是:构建深度神经网络所需要的函数,为下一任务的“构建用于图像分类的深度神经网络”做准备。任务所需要的资料可以在末尾参考链接第一条找到。我用的环境是天池的notebook构建单层神经网络的前向后向传播的完整过程如下图:构建神经网络的总步骤:初始化网络参数前向传播计算一层中的线性求和部分计算激活函数的部分集合线性求和与激活函数计算误差反向传播线性部分的反向传播激活函数部分的反向传播结合线性部分与激活函数的反向传播更新原创 2020-11-09 19:45:25 · 2880 阅读 · 0 评论 -
深度学习 | 用1层隐藏层的神经网络分类二维数据
本文是吴恩达《深度学习》课程的L1W3编程作业,主要也是跟着参考资料里面的博主实现了一遍,也加了一些自己的理解和补充。希望自己早日掌握这些神奇的知识!我用的环境是天池的notebook1 实验目标实现具有单个隐藏层的2分类神经网络使用具有非线性激活函数的神经元,例如tanh计算交叉熵损失实现前向和后向传播2 准备工作2.1 安装包python中需要用到的软件包:numpy-科学计算sklearn-用于数据挖掘和分析matplotlib-可视化课程提供的数据包,资料在第二个原创 2020-11-05 09:34:46 · 1189 阅读 · 1 评论 -
深度学习| 用神经网络思想实现Logistic回归
吴恩达《深度学习》L1W2作业1本文是跟着参考资料的博主梳理一遍,化为内功!我使用的编译环境是天池的notebook。1 使用numpy构建基本函数1.1 sigmoid function 和np.exp()什么是sigmoid函数?也称为逻辑函数,它是一种非线性函数,可以用来解决二分类问题。它的优点是函数处处可导;函数范围在[0,1]之间(可以用来压缩数据)。用math.exp()实现sigmoid函数:import mathdef basic_sigmoid(x):原创 2020-11-03 14:31:40 · 629 阅读 · 0 评论 -
深度学习| 能识别猫的简单神经网络
2.1 二分分类原创 2020-11-03 13:09:28 · 958 阅读 · 0 评论 -
【机器学习实战】学习笔记 | 决策树
其实这样学起来还是很快的! 但是代码敲玩记得时常看一看 理解理解会掌握得更好 只过一遍肯定是不行的!原创 2020-11-01 16:34:17 · 808 阅读 · 2 评论 -
【机器学习实战】学习笔记 | K-近邻算法
这篇写得很好,可以作为参考:https://github.com/Jack-Cherish/Machine-Learning原创 2020-10-29 16:27:19 · 204 阅读 · 0 评论 -
学习笔记 | pytorch的安装
0基础做毕设,爽歪歪。第一步,吧这些所需条件现弄好。pytorch >= 1.0.1torchvision >= 0.2.2numpyscipypython-opencvscikit-imagePillow (PIL)imageiotqdmtensorflow / keras (for dataset making)什么是pytorch?...原创 2019-12-11 18:29:53 · 205 阅读 · 0 评论 -
学习笔记2 | 机器学习实战(Harrington)
第二章 k-近邻算法本章主要内容1 k-近邻分类算法2 从文本文件中解析和导入数据3 使用Matplotlib创建扩散图4 归一化数值原创 2019-12-03 22:57:15 · 225 阅读 · 1 评论 -
学习笔记1 | 机器学习实战(Harrington)
写在前面: 本博客系列是关于《机器学习实战》一书的学习笔记系列,与隔壁吴恩达的视频笔记相互配合,希望能学得更好一些(不知道,试试吧)。第一章 机器学习基础什么是机器学习机器学习就是把海量无序的数据转换成有用的信息。机器学习需要用到统计学知识。训练集:用于训练机器学习算法的数据样本集合。特征/属性:训练样本集的列,独立测量得到的结果。多个特征联系在一起共同组成一个训练样本。目标变量:...原创 2019-12-01 19:04:43 · 246 阅读 · 0 评论