22考研DS(2021-06-01)
1.力扣110. 平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
提示:
树中的节点数在范围 [0, 5000] 内
-104 <= Node.val <= 104
题解:
定义全局变量记录答案,递归求出左右子树高度
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool ans;
bool isBalanced(TreeNode* root) {
ans=true;
dfs(root);
return ans;
}
int dfs(TreeNode* root){
if(!root) return 0;
int lc=dfs(root->left);
int rc=dfs(root->right);
if(abs(lc-rc)>1) ans=false;
return max(lc,rc)+1;
}
};
2.力扣235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
题解:
LCA问题
root点左边是p,右边是q;则p的值小于root值,q的值大于root值
root点左边是p,q;p、q值都小于root值
root点右边是p,q; p、q值都大于root值
当前节点为另外一个节点的祖先的情况放到第一种情况里面取等号
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
/*
LCA问题
root点左边是p,右边是q
root点左边是p,q
root点右边是p,q
*/
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(p->val > q->val) swap(p,q);
if(p->val <= root->val && q->val >= root->val) return root;
if(p->val < root->val) return lowestCommonAncestor(root->left,p,q);
return lowestCommonAncestor(root->right,p,q);
}
};