数据挖掘之决策树

一、目的

  1. 熟悉掌握决策树的原理,
  2. 熟练掌握决策树的生成方法与过程


二、工具

  1. Anaconda
  2. sklearn
  3. pydotplus


三、简介

决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型。


四、内容

1. 自己创建至少2个向量,每个向量至少1个属性和1个类标号,根据向量生成决策树,并利用该决策树进行预测。如:

from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

clf.predict([[2., 2.]])
clf.predict_proba([[2., 2.]])       #计算属于每个类的概率

image.png
要求根据要求随机生成数据,并构建决策树,并举例预测。

2. 对鸢尾花数据构建决策树,

(1) 调用数据的方法如下:

from sklearn.datasets import load_iris
iris = load_iris()# 从sklearn 数据集中获取鸢尾花数据。

(2) 利用sklearn中的决策树方法对鸢尾花数据建立决策树
(3) 为了能够直观看到建好的决策树,安装 pydotplus, 方法如下:

pip install pydotplus

pydotplus使用方法

import pydotplus #引入pydotplus
dot_data = tree.export_graphviz(clf, out_file=None) 
graph = pydotplus.graph_from_dot_data(dot_data) 
graph.write_pdf("iris.pdf")#将图写成pdf文件

image.png
image.png



五、总结

1.课堂上决策树的思路很好理解,但是实际操作的时候还是遇到了很多问题,通过对比数据构建了决策树
2.借助可视化工具可以更好的理解决策树,但是Graphviz实在是坑太多了
总结了两种解决Graphviz’s not found的途径:
(1)添加io,直接指向Graphviz的地址
(2)修改环境变量
3.不使用sklearn的代码找到了部分教程,还在钻研

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值