神经网络
文章平均质量分 85
高山仰止景
脑机接口,脑科学与类脑研究,长期根植于脑机接口方向最新前沿论文以及代码复现,会python,c,汇编语言,matlab,
展开
-
【论文】Physics-informed attention temporal convolutional network for EEG-based motor imagery classifica
脑-机接口(BCI)是一项前沿技术,具有改变世界的潜力。在许多BCI应用中,已经广泛使用了脑电图(EEG)运动想象(MI)信号来帮助残疾人士、控制设备或环境,甚至增强人类能力。然而,大脑信号解码的有限性能正在限制BCI行业的广泛增长。在本文中,我们提出了一种基于注意力的时序卷积网络(ATCNet)用于基于EEG的运动想象分类。ATCNet模型利用多种技术,以相对较少的参数数量提升MI分类的性能。原创 2024-04-17 10:32:26 · 1035 阅读 · 0 评论 -
【脑机接口 算法】EEGNet: 通用神经网络应用于脑电信号
脑机接口(BCI)使用神经活动作为控制信号,实现与计算机的直接通信。这种神经信号通常是从各种研究透彻的脑电图(EEG)信号中挑选出来的。卷积神经网络(CNN)主要用来自动特征提取和分类,其在计算机视觉和语音识别领域中的使用已经很广泛。CNN已成功应用于基于EEG的BCI;但是,CNN主要应用于单个BCI范式,在其他范式中的使用比较少,论文作者提出是否可以设计一个CNN架构来准确分类来自不同BCI范式的EEG信号,同时尽可能地紧凑(定义为模型中的参数数量)。原创 2023-11-08 12:42:07 · 2751 阅读 · 0 评论 -
【脑机接口 论文】利用脑机接口帮助ALS患者恢复对家用设备的控制science
脑机接口(bci)可以用来控制像肌萎缩侧索硬化症(ALS)这样的神经障碍患者的辅助设备,这些患者限制了语言和行动。对于辅助控制,BCI系统需要准确和可靠,最好具有最小的设置时间。在这项研究中,一名因ALS导致严重构音障碍的参与者通过腹侧感觉运动皮层上的慢性皮质电图(ECoG)植入物,用六个直观的语音指令操作计算机应用程序。在3个月的研究期间,无需模型再训练或重新校准,即可准确检测和解码语音命令(中位数精度:90.59%)。BCI的使用不需要外源性的定时提示,使参与者能够随意发出自定节奏的命令。原创 2023-10-31 16:05:15 · 311 阅读 · 0 评论 -
【神经网络】如何在Pytorch中从零开始将MNIST网络量化为8位
在这里,我们在输入卷积层conv1之前对激活进行量化,并使用名为quantizeLayer的函数,该函数接受conv或线性层以及量化激活的激活、缩放和零点,quantizeLayer()函数执行完全量化的层的前向传递。您可能想知道quantize_tensor_act()函数是做什么的,它只是通过遍历1000个示例并平均结果,使用张量x通常具有的最小值和最大值对激活x进行量化。然而,现代实现通过一些花哨的位技巧(即近似)绕过了这种规模的浮点乘法,这些技巧被证明对网络的精度影响可以忽略不计。原创 2023-10-13 16:10:11 · 1078 阅读 · 0 评论 -
【脑机接口论文与代码】High-speed spelling with a noninvasive brain–computer interface
作者:Xiaogang Chen a,1 , Yijun Wang b,c,1,2 , Masaki Nakanishi b摘要:在过去的20年里,脑机接口取得了前所未有的进步。然而,低通信速率是基于脑机接口的人类通信的主要障碍。本研究提出了一种基于脑电图的脑机接口拼写器,其信息传输速率(ITRs)高达每秒5.32位,是使用非侵入性或非侵入性脑机接口的拼写器中报告的最高ITRs最高。原创 2023-10-10 17:33:58 · 685 阅读 · 2 评论 -
【算法 】两组随机变量协方差矩阵 矩阵的特征值与特征向量
对于两个矩阵x=(5,10),y=(10,10)的矩阵计算。众所周知协方差矩阵在相关性计算中起到重要的而作用。本文通过python 计算两个矩阵的协方差矩阵,并且进行分析。协方差矩阵是一种用于描述两个随机变量之间相关性的矩阵。它是一个对称矩阵,其中每个元素都表示两个随机变量在该维度上的协方差。协方差矩阵的大小与随机变量的数量相关,对于一个二维随机变量,协方差矩阵的大小为2x2。原创 2023-10-10 09:59:32 · 868 阅读 · 1 评论 -
【神经网络】Python基于numpy灵活定义神经网络结构的方法
主要介绍了Python基于numpy灵活定义神经网络结构的方法,结合实例形式分析了神经网络结构的原理及Python。本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。具体实现方法,涉及Python使用numpy扩展进行数学运算的相关操作技巧,需要的朋友可以参考下。用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!完整的numpy反向传播代码如下。要点: dtype=objec。隐藏层1节点数目:5。隐藏层2节点数目:7。隐藏层3节点数目:4。原创 2023-09-20 09:31:11 · 446 阅读 · 0 评论 -
【脑机接口论文与程序源代码】权重冻结:一种全连通层的正则化方法及其在脑电分类中的应用(WEIGHT-FREEZING: A REGULARIZATION APPROACh)
在脑电解码领域,提升人工神经网络(ANNs)性能具有重要的潜力。本研究引入一种新方法,称为“Weight-Freezing”,它基于 ANN 正则化和神经科学的先验知识原理。Weight-Freezing的概念围绕着在反向传播过程中冻结全连接层中特定权重,以减少某些神经元对特定脑电任务决策过程的影响。通过使用掩码矩阵和阈值确定在反向传播过程中冻结权重的比例来实现这一目标。翻译 2023-09-15 23:41:00 · 186 阅读 · 0 评论 -
【脑机接口论文与代码】 基于自适应FBCCA的脑机接口控制机械臂
SSVEP-BCI系统通常使用固定的计算时间和静态窗口停止方法来解码EEG信号,这降低了系统的效率。针对这一问题,本文采用了一种自适应FBCCA算法,该算法利用贝叶斯估计动态寻找结果预测的最佳数据长度,适应不同试验和不同个体之间的差异,有效提高了系统运行的有效性。同时,通过这种方法,本文构建了一个基于自适应FBCCA的脑控机械臂抓取生命辅助系统。在本文中,我们选择了20名受试者,共进行了400个实验。大量实验验证了该系统的可用性,平均识别成功率为95.5%,这也证明了该系统可以应用于实际场景。原创 2023-09-14 23:04:05 · 1439 阅读 · 1 评论 -
【脑机接口】基于脑机接口和经皮脊髓电刺激的下肢康复新方法
在虚拟现实中,患者在没有机器人辅助的情况下观察他的腿在移动,此时应用tSCS,同步启动与自主运动相关的神经元活动和辅助设备工作产生的传入信号。一个机器人,由于我们自己的软件,它能以自然的方式移动腿部和脊髓的经皮电刺激,粗略地说,这会放大来自大脑的信号。一个机器人,由于我们自己的软件,它能以自然的方式移动腿部和脊髓的经皮电刺激,粗略地说,这会放大来自大脑的信号。BCI采用P300范式。Skoltech的研究人员设计了一种新的方法,用于受伤或中风后的腿部康复,该方法使用脑-机接口,并通过皮肤对脊柱进行电刺激。原创 2023-09-11 21:04:58 · 227 阅读 · 0 评论 -
【城市污水处理过程中典型异常工况智能识别】(基于迁移学习,拓扑结构卷积神经网络的污水异常工况识别)
摘 要:针对城市污水处理过程的异常工况识别问题,本文提出了基于图像纹理性分析的工况识别方法。首先总结了几种典型的异常工况的特点,并且分析了卷积神经网络特征提取异常工况的几种纹理特征,之后根据该图像建立了无环拓扑结构的卷积神经网络对污水图像进行分类。网络的浅层卷积实现特征提取,后面是非线性起始层对特征进行处理,其特征对不同深度的层进行分层分解,在分支中使用1×3和1×1卷积核可以大大简化训练网络参数,合并神经元层,然后合并分解特征,整合了更多的中间卷积层,从而进一步增强了特征表示的能力,最后部分实现分类。实验原创 2023-04-10 22:20:34 · 4769 阅读 · 0 评论 -
bp神经网络,多输入多输出,3层网络matlab程序
1 项目背景一个数据集,满足多对多 的对应关系。他希望用神经网络解决它的数据集逆问题。他给了我一个8输出,6输出的一个excel表格,前六列是输出后8列是输入。这样我利用matlab将表格导入为’.mat’文件。输入输出数据维度都在0-3范围。我的思路是这样,做一个8输入1输出的网络。做6个网络并行输入。或者做一个直接8-6的网络。前者就是多输入单输出,后者就是一个直接多对多的映射。2神经网络输入层节点数取决于输入向量长度隐含层取决于数据集复杂程度,不宜过多不宜过少。输出层,希望映射的数据节点。原创 2021-04-16 23:16:24 · 19443 阅读 · 0 评论 -
基于bp神经网络的性别预测
1背景神经网络具有预测,拟合,分类的作用2项目目标通过原始数据集性别,体重与体重的对应,实验神经网络的训练。并最终完成输入体重和身高的数据,预测性别。3数据集4算法结构模型采用bp算法。建立一个bp网络,拥有输入层,隐含层,输出层。网络的抽象图如下所示。含有中间两个权值矩阵w1,w2.5 程序这个matlab程序5.1优点 1归一化数据时候使用均值平移,在使用标准差让数据在[-1,1]之间,相较于最大最小归一化,取消了不同数据之间的差异性。 2 使用了批量尺度下降算法。提高了鲁原创 2021-04-13 19:30:31 · 2560 阅读 · 9 评论