总结:其实还是两个数据集的整合操作
package waterChuli.flinkDetil;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
*
*
*
* https://www.pianshen.com/article/60011255975/
* nc -lp 9999
*/
public class Gongxiang {
private static final Logger LOG = LoggerFactory.getLogger(Gongxiang.class);
public static void main(String[] args) {
try {
StreamExecutionEnvironment fsEnv = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Tuple2<Integer, String>> ds1 = fsEnv.fromElements(Tuple2.of(1, "男"), Tuple2.of(2, "女"));
//自定义状态描述器
MapStateDescriptor<Integer, String> genderInfo= new MapStateDescriptor(
"genderInfo",
BasicTypeInfo.INT_TYPE_INFO,
BasicTypeInfo.CHAR_TYPE_INFO
);
//通过将ds1将自己进行广播
BroadcastStream<Tuple2<Integer,String>> bcStream=ds1.broadcast(genderInfo);
SingleOutputStreamOperator<Tuple5<Integer, String, Integer, String, Double>> ds2 = fsEnv.socketTextStream("localhost", 9999)
.map(new MapFunction<String, Tuple5<Integer, String, Integer, String, Double>>() {
@Override
public Tuple5<Integer, String, Integer, String, Double> map(String s) throws Exception {
String[] strings=s.split(",");
int id= Integer.valueOf(strings[0]);