题目:
你和你的朋友,两个人一起玩 Nim 游戏:
桌子上有一堆石头。
你们轮流进行自己的回合,你作为先手。
每一回合,轮到的人拿掉 1 - 3 块石头。
拿掉最后一块石头的人就是获胜者。
假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。
示例 1:
输入:n = 4
输出:false
解释:如果堆中有 4 块石头,那么你永远不会赢得比赛;
因为无论你拿走 1 块、2 块 还是 3 块石头,最后一块石头总是会被你的朋友拿走。
示例 2:
输入:n = 1
输出:true
示例 3:
输入:n = 2
输出:true
思路:(数学推导)当石头数少于4你都可以赢,当等于四时总会输,当5,6,7时你都可以通过控制,能赢(5:你取1无论另一个人取1,2,3你都可以赢,6,7都一样),所以当为4的倍数时,每次取石头,不管你怎么取,另一个人都可以控制你们每次取出总数为4,剩余数还为4的倍数,达到你输的目的。当不是4倍数时,你可以通过控制,达到赢的目的。
总之,石头总数是4的倍数你总会输,否则会赢。
代码:
class Solution {
public:
bool canWinNim(int n) {
return n % 4 != 0;
}
};