一阶微分方程还是太过于简单,如果只会一阶微分方程的话,那我们组成的电路只有RLE电路或者RCE电路。于是y思考,那二阶微分方程是不是对应的RLC的电路呢?接下来我们用二阶微分方程来分析电路。
首先我们做如下的数学题
四个微分方程对应的四个解,matlab的解如下
前两个关于方程x的解好分析,但是在第三个方程的解内含三角函数,所以我们试图用matlab进行化简,如下图所示
看样子是一个震荡函数
看这个样子确实很像
那么看这个结果应当和方程3的结果类似
用matlab化简后得出
y暂时还是不会使用matlab画微分方程的函数但是我会使用simulink画图。
首先将微分方程变形如下图
依据现代控制理论基础获得状态空间的模拟结构图获得如下关于x的解的函数图像
其中黄色线表示过阻尼系统微分方程的解的图像,红色线表示欠阻尼系统微分方程的解的图像,蓝色线表示临界阻尼系统微分方程的解的图像,绿色线表示无阻尼系统方程的解的图像。
将其放大
那么,我们已电路为例,设C的初始值是3V;电路图如下所示
依图获得方程:
化简后得出
我们很是惊讶,获得的电路方程居然是二阶的,而且形式和最开始的练习方程的格式很相似。
首先
在Multisim仿真软件仿真条件设置如下图
测试电压值
将电路参数带入方程中得下图:
获得方程解
带入初始条件
获得特解
在仿真软件中获得电压的趋势
在matlab获得电压得趋势
看来simulink得图解是正确的。y很激动。于是如法炮制。
将参数带入方程中
获得通解
带入初始条件
获得特解
获得电路的仿真结果
在康康simulink的结果
感觉电压下降趋势比5ohm的电路更快了。
带入参数
获得通解
带入初始值
获得通解
函数有点震荡,与猜测结果相符
在simulink中仿真
y陷入了沉默,这个图的仿真结果有点另类。到底是道德的沦丧还是人性的泯灭。于是y在simulink中修改了如下参数
重新运行仿真
此时结果正确。
带入参数到方程中
获得解如下
带入初始条件
获得特解
运行仿真,此时是可以看到仿真结果
运行simulink
设置参数
获得如下函数图
将结果全部仿真。此时我们得出结论R越大电路越不容易震荡,也就是说越容易稳定
simulink仿真
修改泯灭人性的参数
重新运行
将可能需要的结果输出如下图
这篇文章表面是写电路运行的可能结果,实际是想将电路数学化,将数学模型化。
很多人都说数学没啥用,那是没有运用到工程中,我将多个学科结合,让数学富有生命,让学习数学的人不在枯燥。
对于高中来说将电路化成运动方程
正所谓万物基于数学。
仿真、matlab、数学推导及电路搭建图下载地址如下
https://download.csdn.net/download/qq_43161960/85108841