《Deep Learning from Scratch》鱼书学习笔记 3-6,7 手写数字的识别

这篇博客介绍了如何使用MNIST数据集进行手写数字识别,包括数据加载、预处理及神经网络的构建。首先,通过Python加载MNIST数据,并展示数据的形状。接着,构建简单的神经网络模型进行推理处理,实现93.52%的准确率。最后,引入批处理概念,以提高处理效率,保持相同准确率。
摘要由CSDN通过智能技术生成

3.6 手写数字的识别

3.6.1 MNIST 数据集

import sys, os
sys.path.append(os.pardir) # 为了导入父目录中的文件而进行的设定
from dataset.mnist import load_mnist
# 第一次调用会花费几分钟……
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
Converting train-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting train-labels-idx1-ubyte.gz to NumPy Array ...
Done
Converting t10k-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting t10k-labels-idx1-ubyte.gz to NumPy Array ...
Done
Creating pickle file ...
Done!
# 输出各个数据的形状
print(x_train.shape) # (60000, 784)
print(t_train.shape) # (60000,)
print(x_test.shape) # (10000, 784)
print(t_test.shape) # (10000,)
(60000, 784)
(60000,)
(10000, 784)
(10000,)

注意:784 = 28 * 28
因为原图像为28 * 28像素的,按照一维数组展开即为1 * 784

import sys, os
sys.path.append(os.pardir)
import numpy as np
from dataset.mnist import load_mnist
from PIL import Image
def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))  # 把保存为NumPy数组的图像数据转换为PIL用的数据对象
    pil_img.show()
# (x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,normalize=False)
img = x_train[0]
label 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值