分割回文串 II[动规典中典]

本文探讨了动态规划在解决分割回文串问题中的应用,通过对比DFS+剪枝的超时解决方案与动态规划的优化方法,强调了动态规划在处理复杂问题时的优势。作者分享了从DFS到动态规划的转变过程,包括关键的思路转换、状态定义和状态转移,并提醒读者多练习以提升动态规划的解题能力。
摘要由CSDN通过智能技术生成

前言

动态规划就像贪心一样,高质量考察逻辑分析和问题分解的能力。但动态规划却比贪心更明确一点,将大问题拆解成规模更小性质相同的小问题进行递推中,找到状态 & 状态转移,则能用空间换时间,否则迎接而来的就算N方或指数级复杂度。

一、最少分割回文串次数

在这里插入图片描述

二、DFS + 剪枝 || 动规

1、DFS + 剪枝 = timeout

// 分割回文串II
public class MinCut {
    /*
    target:分割回文串的最少次数。
    1-分割成回文列表的次数?该列表的size - 1;
    2-最少次数?用一个变量记录最小的即可。
    idea:先标准字符串的各项字串是否为回文,再dfs去组合,配合已得的min去剪枝。
    result:timeout
    idea2:动态规划,f[i]表示s[0:i]字串最小分割次数。
     */
    public int minCut(String s) {
        // abba cdeedcab
        int n = s.length();
        // 标注字符串的子串是否为回文。
        boolean[][] isPa = isPalindrome(s);
        // dfs 获取最小分割次数。
        dfs(s, 0, 0, isPa);
        // 返回最小分割次数。
        return min;
    }

    private void dfs(String s, int cur, int size, boolean[][] isPa) {
        if (cur == s.length()) {
            min = size - 1;

            return;
        }
        if (size - 1 >= min) return;

        for (int i = 0; i + cur < s.length(); i++) {
            if (isPa[cur][i + cur]) dfs(s, cur + i + 1, size + 1, isPa);
        }
    }

    int min = 1 << 30;

    private boolean[][] isPalindrome(String s) {
        int n = s.length();
        boolean[][] isPa = new boolean[n][n];

        for (int i = 0; i < n; i++) {
            isPa[i][i] = true;

            for (int j = i - 1; j >= 0; j--) {
                if (s.charAt(i) == s.charAt(j) && (j + 1 == i || isPa[j + 1][i - 1]))
                    isPa[j][i] = true;
            }
        }
        return isPa;
    }
}

2、动规

// idea2:动态规划,f[i]表示s[0:i]字串最小分割次数。
class MinCut2 {
    /*
    target:分割回文串的最少次数。
    1-分割成回文列表的次数?该列表的size - 1;
    2-最少次数?用一个变量记录最小的即可。
    idea:先标准字符串的各项字串是否为回文,再dfs去组合,配合已得的min去剪枝。
    result:timeout
    idea2:动态规划,f[i]表示s[0:i]字串最小分割次数。
    // review:
    // 1-动态规划要多练,找规律太看题感了,没有大量的沉淀,根本找不到角度。
    // 2-看题解虽一下秒懂,但是里面细节其实很多,需要大量的沉淀,才能完美的把控各种细节,做到见招拆招。
    // 3-除了细节多外,就算把细节都处理了,题解区竟然还有巧妙的做法,一种殊途同归鸡皮疙瘩的处理方式。
    // 比如Arrays.fill(isPa[i],true) 配合 isPa[j][i] = s.charAt(i) == s.charAt(j) && isPa[j+1][i-1]。
    // 根本不需要if,让CPU一直算即可。

    // 再比如for (int j = 1; j <= i; j++) { 后面用f[j - 1],而题解是for (int j = 0; j < i; j++) {直接用f[j]。
    // 虽然一样,但这种方式不是直观方式,是有小设计在里面的 = 直观+小思考进行转换。

    // 4-综上,大量练题好处(多看评论区,进行一题多解。),即量(这个量是独立思考+学习他人的量,而不是单纯的磨时间。)的重要性,a-有题感能快速找到分析角度和规律;b-大量细节可做到灵活的见招拆招,而不是死板坐牢浪费时间。
    // 除此之外,不得不说动态规划 是 解决指数级dfs的锦囊妙计(一般情况下,两种容易关联。)。
     */
    public int minCut(String s) {
        // abba cdeedcab
        // abba b || a b bab
        int n = s.length();
        // 标注字符串的子串是否为回文。
        boolean[][] isPa = isPalindrome(s);
        // 动态规划,本质结合贪心,把最大的回文分割出来,剩下的字符串,会有前面的状态记录。
        int[] f = new int[n];
        for (int i = 0; i < n; i++) {
            if (isPa[0][i]) continue;// 默认f[i] = 0;

            f[i] = 1 << 30;// 先设位最大,然后找最小分割次数。
            for (int j = 1; j <= i; j++) {
                // 取从任意j转移到i 最小的分割次数。
                if (isPa[j][i]) f[i] = Math.min(f[i],f[j - 1] + 1);

            }
        }
        return f[n - 1];
    }

    private boolean[][] isPalindrome(String s) {
        int n = s.length();
        boolean[][] isPa = new boolean[n][n];

        for (int i = 0; i < n; i++) {
            isPa[i][i] = true;

            for (int j = i - 1; j >= 0; j--) {
                if (s.charAt(i) == s.charAt(j) && (j + 1 == i || isPa[j + 1][i - 1]))
                    isPa[j][i] = true;
            }
        }
        return isPa;
    }
}

总结

1)动态规划要多练,找规律太看题感了,没有大量的沉淀,根本找不到角度。

2)看题解虽一下秒懂,但是里面细节其实很多,需要大量的沉淀,才能完美的把控各种细节,做到见招拆招。

3)除了细节多外,就算把细节都处理了,题解区竟然还有巧妙的做法,一种殊途同归鸡皮疙瘩的处理方式。

4)两种二维动规,一种是状态也是二维的,必须N方来递推;一种状态一维,但递推时需要前面的所有状态。

参考文献

[1] LeetCode 分割回文串 II

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值