海量数据在内存小的情况下:单个文件去重(url)、两个文件获取共同的数据(url)、单个文件取Top K(整数)、

借鉴:https://blog.csdn.net/qq_46514118/article/details/123635332
https://blog.csdn.net/wcfcangzhuo/article/details/111745837
https://blog.csdn.net/jiuzhang_ninechapter/article/details/45668735

一:海量数据在内存小的情况下:单个文件去重(url)

1.(分治+Hash)+合并:

可以对 url 取hash,对 hash%100,即将所有 url 分进100个小文件中。重复的 url 一定会被分到同一个小文件中,再对小文件进行去重。如果 hash 算法做的足够好,不同 url 的hash值肯定不同,再小文件中可以对哈希值进行去重。也可以通过 set 对url本身进行去重。(就算不同小文件有可能相同,就再次重复分治+Hash的操作)

2.BloomFilter布隆过滤器:

二:海量数据在内存小的情况下:两个文件获取共同的数据(url)

(分治+Hash)+合并

三:海量数据在内存小的情况下:单个文件取Top K(整数)

(分治+排序)+合并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值