递归和分治 / 递推 / 高精度 / 数论----Hanoi双塔问题

Hanoi双塔问题

题目

给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有空的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将 这些国盘移到C柱上,在移动过程中可放在B柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2) A、B、C三根细柱上的圆盘都要保持上小下大的顺序;

任务:设An为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An。

输入描述
Input

输入文件hanoi.in为一个正整数n,表示在A柱上放有2n个圆盘。

输出描述
Output

输出文件hanoi.out仅一行,包含一个正整数,为完成上述任务所需的最少移动次数An。

样本输入
Input example
1
样本输出
Output example
2

解答

import java.math.BigInteger;

import java.util.Scanner;

/*
*     分析可知,在单汉诺塔的情况下,每加一个盘,次数就在原有基础上   *2+1   。推论得N个最少需要移动    2的N次方-1   次。而双诺塔则在单诺塔基础上乘以二即可
*                      解法一:由公式直接java大数据运算
*                      解法二:二进制数每加一位1也是在原有的数值上  *2+1。因为N个盘(单诺塔)最少移动次数 = N位都为1的二进制数。而双诺塔  *2 ,即N+1位都为1的二进制数-1
*/

public class Main{
          public static void main(String[] args){
	//解法一:Java大数据运算

//	Scanner in =new Scanner(System.in);
//	int n = in.nextInt();
//	BigInteger big = new BigInteger("2");
//             big = big.pow(n+1);
//             big = big.subtract(BigInteger.ONE);
//             big = big.subtract(BigInteger.ONE);
//	System.out.println(big.toString());

                //解法二:二进制运算
                StringBuffer str = new StringBuffer();
                Scanner in = new Scanner(System.in);
                int n =in.nextInt();
                for(int i=0;i<=n;i++) {
                   str.append("1");
                }
                BigInteger big = new BigInteger(str.toString(), 2);
                big=big.subtract(BigInteger.ONE);
                System.out.println(big.toString());
            }
}

测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值