1080 Graduate Admission 结构体排序

本文介绍了一种使用C++编写的算法,通过比较学生的学习成绩和综合能力,为大学招生过程中的学生排名和志愿分配提供解决方案。排序函数首先根据最终成绩和次级指标进行排序,然后确定每位学生的排名,确保公平录取。程序还考虑了志愿选择和学校招生容量限制,实现最优匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <bits/stdc++.h>
using namespace std;
struct student{
    int id;
    float Ge;
    float Gi;
    float final;
    int choice[5];
    int rank;
};
struct school{
    int capacity;    //招生容量
    vector<student>accept;    //最终录取的学生容器
}sch[101];
bool cmp(student a,student b){
    if(a.final!=b.final)
        return a.final>b.final;
    else
        return a.Ge>b.Ge;
}
bool cmp1(student a,student b){
    return a.id<b.id;
}
int main(){
    //读入输入
    int n,m,k;cin>>n>>m>>k;
    for(int i=0;i<m;i++)
        cin>>sch[i].capacity;
    vector<student>v;
    for(int i=0;i<n;i++){
        student temp;
        cin>>temp.Ge>>temp.Gi;
        temp.id=i;
        temp.final=temp.Gi+temp.Ge;
        for(int j=0;j<k;j++)
            cin>>temp.choice[j];
        v.push_back(temp);
    }

    //排序
    sort(v.begin(),v.end(),cmp);

    //确定每位学生的排名属性
    int rank=1;student pre=v[0];
    v[0].rank=rank;
    for(int i=1;i<=v.size();i++){
        if(v[i-1].final==pre.final&&v[i-1].Ge==pre.Ge)
            v[i-1].rank=rank;
        else{
            rank=i;
            pre=v[i-1];
            v[i-1].rank=i;
        }
    }

//可以把这块取消注销,打印看看排名
//    for(int i=0;i<v.size();i++)
//        cout<<v[i].Ge<<" "<<v[i].Gi<<" "<<v[i].rank<<" "<<v[i].id<<endl;


//按排名从上到下,一个一个读取志愿
    for(int i=0;i<v.size();i++){
        for(int j=0;j<k;j++){
            int schNum=v[i].choice[j];
            if(sch[schNum].capacity>0){
                sch[schNum].accept.push_back(v[i]);
                sch[schNum].capacity--;
                break;   //只要录取了,就break,读取下一个学生
            }
            else{    //如果和目标院校最后一名同学排名相同,可以超额录取
                if(v[i].rank==sch[schNum].accept[sch[schNum].accept.size()-1].rank){
                    sch[schNum].accept.push_back(v[i]);
                    break;   //只要录取了,就break,读取下一个学生
                }
            }
        }
    }
    //输出id
    for(int i=0;i<m;i++){
        vector<student>temp(sch[i].accept);
        sort(temp.begin(),temp.end(),cmp1);

        if(temp.size()==0)
            cout<<endl;
        else{
            for(int j=0;j<temp.size()-1;j++)
                cout<<temp[j].id<<" ";
            cout<<temp[temp.size()-1].id<<endl;
        }

    }

}

逻辑斯蒂回归(Logistic Regression)是一种常用的分类算法,常用于二分类问题中,如预测研究生能否被录取。Kaggle的Graduate Admission数据集包含了申请人的各项信息,例如GRE分数、TOEFL分数、大学GPA、科研经验、推荐信等,目标变量通常是“是否被录取”(是否被研究生院接受)。 首先,我们来理解数据集属性的意义: 1. GRE Score: 研究生入学考试成绩 2. TOEFL Score: 英语水平测试得分 3. University Rating: 学校排名 4. SOP: Statement of Purpose(个人陈述)的质量 5. LOR: Letter of Recommendation(推荐信)的质量 6. CGPA: 学术平均绩点 7. Research: 科研经历(0或1) 8. Chance of Admit: 录取概率(这个不是原始数据,而是我们最终需要预测的目标) 数据预处理步骤主要包括: 1. **加载数据**:使用pandas库读取csv文件并查看基本信息。 2. **缺失值处理**:检查是否存在缺失值,并选择填充、删除或估算策略。 3. **编码分类变量**:将类别型特征转换成数值型,如使用one-hot encoding或者LabelEncoder。 4. **标准化或归一化**:对于数值型特征,通常会做数据缩放,如Z-score标准化或min-max归一化。 5. **划分训练集和测试集**:通常采用80%的数据作为训练集,剩余的20%作为测试集。 6. **特征工程**:如果有必要,可以创建新的特征或调整现有特征。 逻辑斯蒂回归的预测原理是基于sigmoid函数,该函数将线性组合后的输入映射到0到1之间,表示事件发生的可能性。模型学习如何调整权重系数,使得给定输入条件下,正类(如录取)的概率最大化。 实现过程(Python示例,假设使用sklearn库): ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 1. 加载数据 data = pd.read_csv('Admission_Predict.csv') # 2. 数据预处理 # ... 缺失值处理、编码、标准化等操作 # 3. 划分特征和目标 X = data.drop('Chance of Admit', axis=1) y = data['Chance of Admit'] # 4. 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 5. 特征缩放 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 6. 创建模型并拟合 model = LogisticRegression() model.fit(X_train_scaled, y_train) # 7. 预测 y_pred = model.predict(X_test_scaled) # 8. 评估模型性能 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值