由于大量数据结构教程中都将数据结构的知识和算法掺杂起来讲,使很多初学者认为数据结构就是在讲算法,这样理解是不准确的。
数据结构和算法之间完全是两个相互独立的学科,如果非说它们有关系,那也只是互利共赢、“1+1>2”的关系。
最明显的例子,如果你认为数据结构是在讲算法,那么大学我们还学《算法导论》,后者几乎囊括了前者使用的全部算法,有什么必要同时开设这两门课程呢?
我们还可以从分析问题的角度去理清数据结构和算法之间的关系。通常,每个问题的解决都经过以下两个步骤:
- 分析问题,从问题中提取出有价值的数据,将其存储;
- 对存储的数据进行处理,最终得出问题的答案;
数据结构负责解决第一个问题,即数据的存储问题。通过前面的学习我们知道,针对数据不同的逻辑结构和物理结构,可以选出最优的数据存储结构来存储数据。
而剩下的第二个问题,属于算法的职责范围。算法,从表面意思来理解,即解决问题的方法。我们知道,评价一个算法的好坏,取决于在解决相同问题的前提下,哪种算法的效率最高,而这里的效率指的就是处理数据、分析数据的能力。
因此我们得出这样的结论,数据结构用于解决数据存储问题,而算法是思考如何利用存储的数据快速无误地解决问题,它们是完全不同的两类学科。
也正因为如此,你可以认为数据结构和算法存在“互利共赢、1+1>2”的关系。在解决问题的过程中,数据结构要配合算法选择最优的存储结构来存储数据,而算法也要结合数据存储的特点,用最优的策略来分析并处理数据,由此可以最高效地解决问题。
图 1 顺序表存储数据示意图
例如,有这样一个问题,计算“1+2+3+4+5”的值。这个问题我们可以这样来分析:
- 计算 1、2、3、4 和 5 的和,首先要选择一种数据存储方式将它们存储起来,通过前面的学习我们知道,数据之间具有“一对一”的逻辑关系,最适合用线性表来存储。结合算法的实现,我们选择顺序表来存储数据(而不是链表),如图 1 所示;
- 接下来,我们选择算法。由于数据集中存放,因此我们可以设计这样一个算法,使用一个初始值为 0 的变量 num 依次同存储的数据做“加”运算,最后得到的新 num 值就是最终结果。
选择顺序表而不是链表的原因,是顺序表遍历数据比链表更高效。后续讲顺序表时会做详细介绍。