开始翻译博弈论啦~~~

原文章为 Game Thoery , Thomas S. Ferguson

本博客只是做一个简单的翻译,如有错误或是侵权希望及时指正

take-away game(取数游戏)

组合博弈是一种双人的信息完整同时没有机会移动,只有赢或输两种结果的游戏。这种游戏是由包括初始状态的一组状态与玩家的轮流移动决定的。双方轮流移动,将一个状态转移到另一个状态,直到无法移动的最终位置。最终位置是无法再进行移动的状态,然后判断双方的输赢。

这种理论可以分成两种,一种是对等博弈,给定一种走法,对于每一个给定位置双方都是确定的走法。另一种是不对等博弈,双方从给定的位置出发都有一组不同的走法,像国际象棋或跳棋,一方移动白棋之后另一方移动黑棋,就是游击博弈。这一章只讨论对等博弈。


1.1 简单取数游戏。

下面是一个简单的公平博弈的游戏——从一堆筹码中移除一定数量的筹码:

  1. 一共两位玩家记作III
  2. 桌子上一共有21个筹码
  3. 每次可以移除1或2或3个筹码,至少移除一个,最多移除三个。
  4. 玩家轮流取筹码,玩家I先取。
  5. 拿走最后一个筹码的玩家获胜(即无法再取筹码者输)

如何分析这个问题呢? 是否有一个必胜的方法呢?你想成为先手的I还是后手的II呢?我们从后往前推理一下这个问题。这种方式我们称为逆向归纳。(翻译君:我喜欢叫倒推)

如果只有1,2,3个筹码剩余,那么下一个拿走的玩家就显然获得胜利。如果还剩下4个筹码,那下一个玩家拿完之后必定会剩下1,2,3个筹码,那么他的对手就一定能获胜。所以4个筹码是对下一个玩家的必输状态和对上一个玩家(也就是刚刚移动过的玩家)的必胜状态。

留下5,6,7个时,下一个玩家可以将其移动到只剩4个筹码的状态(就是对手的必败态)
留下8个时,下一个玩家只能移动到5,6,7,所以上一个玩家会赢(自己的必败态)
我们发现0,4,8,12,16…个剩余是我们的目标位置我们希望移动到这些状态(翻译君:注意这里是移动到)现在我们讨论21个的状态,因为21不能被4整除,所以玩家I可以获胜,策略是移走1个筹码留下20筹码,此时是我们希望到的目标位置。


1.2 什么是组合博弈

我们现在更准确的定义一下组合博弈,如果满足:

  1. 一共两名玩家
  2. 有一组,通常是有限的,可能的位置或状态
  3. 游戏规则规定了两个玩家和每个移动到另一个位置的移动都是合法的。如果规则对每一个玩家没有区别也就是说双方在每一个位置的选择相同,则称为对等博弈,否则就是不对等博弈
  4. 玩家轮流移动
  5. 当其中一方达到无法在继续移动的位置时,游戏结束。在一般的游戏规则下,最后移动的玩家获胜。在一些情况下,最后移动的玩家为失败。如果游戏永远不会结束,则宣布为平局,但是我们还是会添加情况,称为结束条件。
  6. 无论规则如何,游戏总会在有限的步数之后结束。

要注意到定义中省略了一些重要的规则,随机的移动,比如像摇骰子或者使用卡牌是不被允许的,西洋双陆棋和扑克这种游戏就被排除了组合游戏是一种信息完全公开的游戏
不允许同时移动或者隐藏移动,剪刀石头布和战舰(Battleship)就不在行列了。有限步数内不可能出现平局,所以不存在井字棋。在这些限制下,我们将注意讨论在通常规则下的对等博弈。


1.3 P-positions. N-positions.

回到1.1的取数游戏,我们发现0,4,8,12,16…是先前移动的玩家(即刚刚移动的玩家)的获胜位置,而1,2,3,5,6…是对之后移动玩家的获胜位置。前一种位置我们称为P-positions(P-位置),后一种位置我们称为N-positions(N-位置)。对1.1中的游戏,P-position是能被4整除的位置,称为目标位置.

在对等的组合游戏中,原则上我们可以通过归纳法,从末端位置开始标记过程,得到哪些位置是P-positions,哪些位置是N-positions。如果某个位置无法再进行移动,我们则称这个位置为终点位置。这个算法就是我们在1.1中取数问题里使用的方法。
第一步 :将所有终点位置设为P-位置.
第二步 :将所有能一步到达P-位置的点设为N-位置
第三步 :找到所有只能到达N-位置的点,将其设为P-位置
第四部 :如果第三步中不能再找到新的P-位置就结束,不然就返回第二步

这就是在一般规则下,满足结束条件的对等组合游戏中对于P-位置和N-位置的判断方法

特征属性 P-位置和N-位置由以下三个递归方法定义

  1. 所有终点位置都是P-位置
  2. 对所有的N位置至少都能一步到达P位置
  3. 对所有的P位置每一个移动都只能达到N位置

在misére rule 下,条件1应该改为所有终点位置都是N位置。


1.4 减法游戏

现在让我们考虑一种组合游戏,其中1.1中的取数游戏也是其中的一种特例。设S为一个正整数集合。关于减数集S的减法游戏规则如下。从很大的N个筹码中双方轮流取,每次可以取走的数量s是S中的一个元素即s∈S,最后一个拿的人获胜。1.1中的取数游戏中,实际上就是以S={1,2,3}为减数集的减法游戏。

现在具体说明一下,我们来寻找以S = {1,3,4}为减数集的减法游戏。首先有一个明显的终点位置是0处。因为一步移动到0,那么1,3,4 就是N位置。而 2 是一个P位置,因为2只能移动到1。由于可以移动到2,那么5,6就是N位置。而7只能到达6,4,3,它们
都是N位置,所以7是P位置。

现在简单的继续找,8,10,11是N位置,9是P位置,12,13是N位置,14是P位置。这些都是通过归纳得到的。我们发现P位置的集合 P= {0,2,7,9,14,16…},这些数字都是可以被7整除或是除7余2的元素,而N位置的集合N={1,3,4,5,6,8,10,11,12,13…}。

X01234567891011
positionPNPNNNNPNPNN

那么对于100个数,是先手获得胜利还是后手获得胜利呢?
明显P位置是除7余0或2的数,那么100÷7余2,所以100是P位置。因而后手有获得胜利的最佳策略。


1.5 练习

  1. 在1.1中的游戏里,若用misére rule即最后拿的人输,目标是强迫对方拿最后一个筹码,请分析游戏中的目标状态(即P位置)。

  2. 概况取数游戏(a)在包括许多筹码的游戏中,每回合可以取1~6个筹码,获胜的策略是什么,那些是P位置(b)如果最初有31个筹码,你应该选先手还是后手

  3. 31游戏。(Geoffrey Mott-Smith(1954))
    从一副扑克牌中拿出每种花色的A,2,3,4,5,6。这24张牌面朝上放在桌子上。两个人轮流把扑克翻过去,翻过去的数字总和将被计算作为游戏的进展。每张A被计算为1.首先把数字总和超过31的人失败。这很有点像我们讲过的31筹码的游戏。但是这里有个条件限制。任意一张牌不能被抽出超过4次。
    (a) 如果你是第一个操作的人,如果你用之前我们讲过的策略,如果对手一直选择4会怎样?
    (b) 然而,先手还是可以通过完美的操作必胜。怎么操作呢?
    (翻译君:这里的解析可以看看我的另一篇博客31游戏解析

  4. 寻找以下S对应的P态集:
    (1) S={1,3,5,7}
    (2) S={1,3,6}
    (3) S={1,2,4,5,16…}=2的n次幂
    (4) 在以上情况下,先手会获胜还是后手呢?

  5. Empty and Divide.
    有两个箱子。开始时,一个箱子里有m个筹码,另一个箱子里则有n个筹码。这种状态被表示为(m,n),m>0,n>0。两人轮流操作。每次操作包括:把一个箱子取空,把另一个箱子的筹码分到两个箱子里,使得每个箱子里的筹码至少为1。这儿有一个唯一的终态,即(1,1)。最后操作的人为胜。请找出所有P态。

  6. Chomp!
    Fred发明了一种游戏。Schuh(1952)被David Gale(1974)从一种算法形式中被独立地分出来。Gale的游戏版本包括从一个矩形木板(m*n)中移走一些正方形。两人轮流操作。拿走(1,1)正方形的人被判为输。Chomp的名字来自于把木板想象成巧克力棒,移走就变成了“吃掉”。但是(1,1)正方形这一块是有毒的,谁吃到它就失败了。比方说,从一个8 * 3的巧克力上开始,假设第一个玩家从(6,2)的位置吃了6小块;然后第二个玩家从(2,3)的位置吃了4小块,如图:(1,1) 位置表示有毒。
    (a) 证明这是一个N态(找到一个必胜的办法);
    (b) 试着证明,当巧克力是一个矩形时,先手必胜。提示:也许把右上角的巧克力移走就构成了胜局呢。在这里插入图片描述

  7. Dynamic subtraction

我们前面讲的差集游戏可以这样扩展:将玩家的差集规则和前一位玩家的操作联系起来。很多早期的例子在Schuh(1968)的第十二章出现了。现在我们来看两个其它的例子(如果想知道一般情况,请查看Schwenk(1970))。

(a) 有一堆n根的筹码。先手第一次可以拿走1~n-1根筹码。然后两人
轮流操作,每个玩家至少拿一个,至多拿前一位玩家所拿的个数。如果n=44,那么先手要怎么操作才能赢?n为多少时,后手必胜?

(b) Fibonacci Nim。(Whinihan(1963))和(a)差不多的规则,只是每位玩家可以最多一次拿前一位玩家所拿的两倍。这个游戏比(a)更为复杂,因为它建立在斐波拉契数上。下面给一个定理,使得我们更容易思考:

Zeckendorf’s Theorem.任意一个正整数都能被唯一地写成一些不相邻(当然也不相等)的斐波拉契数之和。例如,43=34+8+1是唯一的,虽然也有43=34+5+3+1,但是5,3是相邻的。如果n=43,先手怎么获胜呢?n为多少时,后手必胜?可以看看http://www.math.ucla.edu/~tom/Games/fibonim.html

  1. The SOS Game
    SOS游戏。(28届美国数学奥林匹克周年赛,1999)一块木板由一行正方形组成,初始化为空。玩家可以选择一块空正方形并在上面写上S或者是O。谁先写出连续的SOS谁就获胜。如果谁都不能写成,那么这个游戏就是一个平局(draw)。
    (1) 假设n=4,且先手在第一块正方形上写了S。证明后手必胜。
    (2) 证明当n=7时,先手必胜。
    (3) 证明n=2000时,后手必胜。
    (4) 如果n=14,谁会赢呢?

施工中~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值