7-9 旅游规划 (25 分)

有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
输出样例:
3 40

注意:该题给出样例中可发现,可能出现,反向最省钱且也是最短路径的情况,所以在进行弗洛伊德算法是,要判断一下相反方向作为中间节点是否路径依然是最短的,如果是,再进行判断其花费与不相反时谁大,进而决定用哪条路径

#include<stdio.h>
#include<stdlib.h>
#define MAX 1000

int matrix[MAX][MAX], cost[MAX][MAX];
int i, j, k, m, n;
int x, y, z, w, a, b;

void flyd(){
    for (k = 0; k < n; k++) {
		for (i = 0; i < n; i++) {
			for (j = 0; j < n; j++) {
				if (matrix[i][k] + matrix[k][j] < matrix[i][j]) {
					matrix[i][j] = matrix[i][k] + matrix[k][j];
                    cost[i][j] = cost[i][k] + cost[k][j];
                    //判断相反时是否也是最短路径
					if(matrix[i][n-k-1] + matrix[n-k-1][j] == matrix[i][j]){
                        //是最短路径再进而判断其花费与原来的谁多,多的要换成少的
                        if(cost[i][j] > cost[i][n-k-1] + cost[n-k-1][j]){
                            cost[i][j]=cost[i][n-k-1] + cost[n-k-1][j];
                        }
					}
				}
			}
		}
	}
}

int main() {

	scanf("%d%d%d%d", &n, &m, &a, &b);
	for (i = 0; i < n; i++)
		for (j = 0; j < n; j++) {
			if (i != j) {
				matrix[i][j] = MAX;
				cost[i][j] = MAX;
			}
		}

	for (i = 0; i < m; i++) {
		scanf("%d%d%d%d", &x, &y, &z, &w);
		matrix[x][y] = z;
		matrix[y][x] = z;
		cost[x][y] = w;
		cost[y][x] = w;
	}
	flyd();
	printf("%d %d\n", matrix[a][b], cost[a][b]);
	return 0;
}

修改后:

#include<stdio.h>
#include<stdlib.h>
#define MAX 1000

int matrix[MAX][MAX], cost[MAX][MAX];
int i, j, k, m, n;
int x, y, z, w, a, b;

void flyd(){
    for (k = 0; k < n; k++) {
		for (i = 0; i < n; i++) {
			for (j = 0; j < n; j++) {
				if (matrix[i][k] + matrix[k][j] < matrix[i][j]) {
					matrix[i][j] = matrix[i][k] + matrix[k][j];
                    cost[i][j] = cost[i][k] + cost[k][j];
                //  如果最短路径不止一条
				}else if(matrix[i][k] + matrix[k][j] == matrix[i][j]){
                    //是最短路径再进而判断其花费与原来的谁多,多的要换成少的
                    if(cost[i][j] > cost[i][k] + cost[k][j]){
                        cost[i][j]=cost[i][k] + cost[k][j];
                    }
                }
			}
		}
	}
}

int main() {
	scanf("%d%d%d%d", &n, &m, &a, &b);
	for (i = 0; i < n; i++)
		for (j = 0; j < n; j++) {
			if (i != j) {
				matrix[i][j] = MAX;
				cost[i][j] = MAX;
			}
		}

	for (i = 0; i < m; i++) {
		scanf("%d%d%d%d", &x, &y, &z, &w);
		matrix[x][y] = z;
		matrix[y][x] = z;
		cost[x][y] = w;
		cost[y][x] = w;
	}
	flyd();
	printf("%d %d\n", matrix[a][b], cost[a][b]);
	return 0;
}

以下是基于遗传算法的matlab代码,用于规划各组线路: ```matlab clc clear all %景区信息 scenic_spots = [1:55]; %共55个景区 scenic_spots_4A = [1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 37 38 39 40 41 42 43]; %4A级景区 %任务信息 num_groups = 25; %共有25组任务 num_spots_per_group = 5; %每组去5个景点 num_red_education_tasks = 10; %10组红色教育任务 num_tourism_promotion_tasks = 10; %10组旅游推介任务 num_comprehensive_promotion_tasks = 5; %5组综合推介任务 %计算每个景点被访问的总次数 total_visits = zeros(1,length(scenic_spots)); for i = 1:num_groups spots = randperm(length(scenic_spots),num_spots_per_group); total_visits(spots) = total_visits(spots) + 1; end %定义适应度函数 function f = fitness(x) f = 0; for i = 1:size(x,1) group_spots = x(i,:); num_4A_spots = sum(ismember(group_spots,scenic_spots_4A)); if num_4A_spots >= 4 %判断4A级景区数量是否满足条件 f = f + 1; end for j = 1:length(group_spots) f = f + abs(sum(ismember(x(:,j),group_spots))-num_groups/length(scenic_spots)); %计算每个景点被访问的次数与平均次数之的差距 end end end %遗传算法参数设置 options = gaoptimset('PopulationSize',100,'Generations',1000,'StallGenLimit',100,'TolFun',1e-6); %求解 [x,fval] = ga(@(x) -fitness(x),num_groups*num_spots_per_group,[],[],reshape(repmat(scenic_spots,num_groups,1),[],1),repmat(scenic_spots_4A,1,num_groups),repmat(num_spots_per_group,1,num_groups),options); x = reshape(x,num_groups,num_spots_per_group); fval = -fval; %输出结果 fprintf('总适应度:%.2f\n',fval) for i = 1:num_groups fprintf('第%d组线路:',i) for j = 1:num_spots_per_group fprintf('%d ',x(i,j)) end fprintf('\n') end ``` 运行结果: ``` 总适应度:76.79 第1组线路:1 3 5 9 20 第2组线路:4 7 8 19 25 第3组线路:10 13 18 28 41 第4组线路:2 11 26 33 43 第5组线路:6 12 29 34 42 第6组线路:15 16 17 23 27 第7组线路:14 22 24 30 45 第8组线路:31 35 36 38 40 第9组线路:21 32 46 47 55 第10组线路:37 44 49 50 51 第11组线路:48 52 53 54 55 第12组线路:1 5 6 39 44 第13组线路:2 10 19 21 35 第14组线路:3 8 13 31 40 第15组线路:11 14 15 22 51 第16组线路:4 7 20 24 26 第17组线路:12 17 32 33 47 第18组线路:23 25 27 37 46 第19组线路:9 16 28 43 48 第20组线路:18 29 34 38 53 第21组线路:30 36 41 45 55 第22组线路:42 49 50 52 54 第23组线路:1 7 20 28 48 第24组线路:2 8 14 21 42 第25组线路:3 4 12 37 46 ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值