目录
Logistic回归
Logistic回归(LR):是一种常用的处理二分类问题的模型。
二分类问题中,把结果y分成两个类,正类和负类。因变量y∈{0, 1},0是负类,1是正类。线性回归
的输出值在负无穷到正无穷的范围上,并不好区分是正类还是负类。因此引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,那就成了Logistic回归
,使得
≥0.5时,预测y=1,而当
<0.5时,预测y=0。

逻辑回归的定义式:
,x代表样本的特征向量。
其中,
为sigmoid函数,

可以理解为预测为正类的概率,即后验概率
,
的取值范围是(0, 1)。。
所以Logistic回归模型就是:

判断类别:

对loss函数求导得到:

当类别y=1时,损失随着
的减小而增大,
为1时,损失为0;
当类别y=0时,损失随着的增大而增大,
为0时,损失为0。
损失函数

这个损失函数叫做对数似然损失函数

本文详细介绍了Logistic回归和Softmax回归,包括它们的定义、损失函数、梯度下降及防止过拟合的方法。Logistic回归用于二分类,而Softmax回归是其多分类的扩展。文中还探讨了两者的联系,指出当类别数k=2时,Softmax回归退化为Logistic回归。此外,文章提到了YOLOV3中采用Logistic分类而非Softmax的原因,并解析了YOLO系列模型的损失函数,强调了分类误差计算中的交叉熵损失函数应用。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



