logistic回归分类与softmax回归

本文详细介绍了Logistic回归和Softmax回归,包括它们的定义、损失函数、梯度下降及防止过拟合的方法。Logistic回归用于二分类,而Softmax回归是其多分类的扩展。文中还探讨了两者的联系,指出当类别数k=2时,Softmax回归退化为Logistic回归。此外,文章提到了YOLOV3中采用Logistic分类而非Softmax的原因,并解析了YOLO系列模型的损失函数,强调了分类误差计算中的交叉熵损失函数应用。
摘要由CSDN通过智能技术生成

目录

Logistic回归

逻辑回归的定义式:

损失函数

梯度下降

Logistic回归防止过拟合:

Softmax回归:

loss函数

逻辑回归与Softmax回归的联系

与神经网络的关系

logistic回归(多分类)和softmax的关系:

YOLOV3中的逻辑分类应用


Logistic回归

Logistic回归(LR):是一种常用的处理二分类问题的模型。

二分类问题中,把结果y分成两个类,正类和负类。因变量y∈{0, 1},0是负类,1是正类。线性回归的输出值在负无穷到正无穷的范围上,并不好区分是正类还是负类。因此引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,那就成了Logistic回归,使得≥0.5时,预测y=1,而当<0.5时,预测y=0。

逻辑回归的定义式:

,x代表样本的特征向量。

其中,

为sigmoid函数,

可以理解为预测为正类的概率,即后验概率的取值范围是(0, 1)。。

所以Logistic回归模型就是:

判断类别:

对loss函数求导得到:

当类别y=1时,损失随着的减小而增大,为1时,损失为0;

当类别y=0时,损失随着的增大而增大,为0时,损失为0。

损失函数

这个损失函数叫做对数似然损失函数࿰

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值