reshape、to_categorical

本文介绍了在数据预处理中,如何使用reshape函数将数据的维度重新排列,并解释了to_categorical函数的作用,即把类别向量转化为二进制的独热编码矩阵,便于后续的模型训练。
摘要由CSDN通过智能技术生成
# X shape (60,000 28x28),
X_train.reshape(X_train.shape[0], -1)

保留第一维,其余的维度,重新排列为一维,-1等同于28*28,reshape后的数据是共60000行,每一行784个数据点。

to_categorical
to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示。其表现为将原有的类别向量转换为独热(onehot)编码的形式。

from keras.utils.np_utils import *
#类别向量定义
b = [0,1,2,3,4,5,6,7,8]
#调用to_categorical将b按照9个类别来进行转换
b = to_categorical(b, 9)
print(b)
 
执行结果如下:
[[1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.]]

one_hot encoding(独热编码)介绍
独热编码又称为一位有效位编码,上边代码例子中其实就是将类别向量转换为独热编码的类别矩阵。也就是如下转换:

     0  1  2  3  4  5  6  7  8
0=> [1. 0. 0. 0. 0. 0. 0. 0. 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值