A Concise Introduction to the Theory of Numbers- Baker A.笔记03

A Concise Introduction to the Theory of Numbers- Baker A
第3章

1. 对 于 一 些 自 然 数 k , ( k , n ) = 1 , 如 果 k a ≡ k a ′ ( m o d   n ) , 对于一些自然数k,(k,n)=1,如果ka\equiv ka'(mod\ n), k,(k,n)=1,kaka(mod n),
那 么 a ≡ a ′ ( m o d   n ) , 所 以 那么a\equiv a'(mod\ n),所以 aa(mod n),
如 果 a 1 , . . . a n 是 一 个 模 n 的 完 全 剩 余 系 , 如果a_1,...a_n是一个模n的完全剩余系, a1,...ann
那 么 k a 1 . . . k a n 也 是 一 个 模 n 的 完 全 剩 余 系 。 那么ka_1...ka_n也是一个模n的完全剩余系。 ka1...kann

更进一步,若自然数k满足 k a ≡ k a ′   ( m o d   n ) , 那 么 ka\equiv ka'\ (mod\ n),那么 kaka (mod n),

a ≡ a ′   ( m o d   n / ( k , n ) ) , 因 为 k / ( k , n ) 和 n / ( k , n ) 互 质 a\equiv a'\ (mod\ n/(k,n)),因为k/(k,n)和n/(k,n)互质 aa (mod n/(k,n))k/(k,n)n/(k,n)

2.中国剩余定理
a x ≡ b   ( m o d   n ) 有 解 当 且 仅 当 ( a , n ) ∣ b . ax\equiv b\ (mod\ n)有解当且仅当(a,n)|b. axb (mod n)(a,n)b.

必要性容易证明,下面证其充分性:

假 设 d = ( a , n ) , 因 为 ( a , n ) ∣ b 假设d=(a,n),因为(a,n)|b d=(a,n),(a,n)b

令 a ′ = a / d , b ′ = b / d , n ′ = n / d 令a'=a/d,b'=b/d,n'=n/d a=a/d,b=b/d,n=n/d

转 化 为 证 明 a ′ x ≡   b ′   ( m o d   n ′ ) 有 解 转化为证明a'x\equiv\ b'\ (mod\ n')有解 ax b (mod n)

因 为 ( a ′ , n ′ ) = 1 , 因为(a',n')=1, (a,n)=1,

所 以 a ′ x 可 以 取 得 模 n 的 一 个 完 全 剩 余 系 中 的 所 有 值 。 证 毕 。 所以a'x可以取得模n的一个完全剩余系中的所有值。证毕。 axn

特别地,
当 a 满 足 : 1 ≤ a ≤ n , 且 ( a , n ) = 1 时 , 当a满足:1\leq a \leq n,且(a,n)=1时, a:1an(a,n)=1

a 组 成 了 一 个 叫 “ a   r e d u c e d   s e t   o f   r e s i d u e s   ( m o d   n ) ” 的 东 西 a组成了一个叫“a\ reduced\ set\ of\ residues\ (mod\ n)”的东西 aa reduced set of residues (mod n)西
(在一个完全剩余系中与n互质的数,假设就叫它n的互质系)

比 如 : n = 12 , 那 么 a 可 以 是 1 , 5 , 7 , 11 比如:n=12,那么a可以是1,5,7,11 :n=12,a1,5,7,11

假设 ( n , n ′ ) = 1 (n,n')=1 (n,n)=1. 让 a 和 a ′ 分 别 取 遍 n 与 n ′ 的 互 质 系 a和a'分别取遍n与n'的互质系 aann

可 以 得 出 a n ′ + a ′ n 取 遍 n n ′ 的 互 质 系 ( ∗ ) 可以得出an'+a'n取遍nn'的互质系(*) an+annn()

即 ϕ ( n ) ϕ ( n ′ ) = ϕ ( n n ′ ) 即\phi(n)\phi(n')=\phi(nn') ϕ(n)ϕ(n)=ϕ(nn)

下面证明 ( ∗ ) (*) ()式:
因 为 ( a , n ) = 1 , ( a ′ , n ′ ) = 1 , ( n , n ′ ) = 1 所 以 a n ′ + a ′ n 与 n , n ′ 互 质 , 进 而 与 n n ′ 互 质 所 以 只 需 证 明 , 若 ( b , n n ′ ) = 1 , 则 b ≡ a n ′ + a ′ n ( m o d   n n ′ ) 对 a , a ′ 有 解 由 ( n , n ′ ) = 1 , 有 ∃ m , m ′ 使 得 m n ′ + m ′ n = 1 ( 这 里 有 m , n 互 质 ) 所 以 ( b m , n ) = 1 , 进 而 ∃ a , a ≡ b m ( m o d   n )   ( 1 ) 同 理 ∃ a ′ , a ′ ≡ b m ′ ( m o d   n ′ )   ( 2 ) ( 1 ) ∗ n ′ + ( 2 ) ∗ n 证 毕 。 \begin{aligned} &因为(a,n)=1,(a',n')=1,(n,n')=1\\ &所以an'+a'n与n,n'互质,进而与nn'互质\\ &所以只需证明,\\ &若(b,nn')=1,则b\equiv an'+a'n(mod\ nn')对a,a'有解\\ &由(n,n')=1,有\exist m,m'使得\\ &mn'+m'n=1(这里有m,n互质)\\ &所以(bm,n)=1,进而\exist a,a\equiv bm(mod\ n)\ (1)\\ &同理\exist a',a'\equiv bm'(mod\ n')\ (2)\\ &(1)*n'+(2)*n证毕。 \end{aligned} (a,n)=1,(a,n)=1,(n,n)=1an+ann,nnn,(b,nn)=1,ban+an(mod nn)a,a(n,n)=1m,m使mn+mn=1(m,n)(bm,n)=1,a,abm(mod n) (1)a,abm(mod n) (2)(1)n+(2)n

3.费马小定理
对于任意的自然数a,如果p是素数,那么

a p ≡ a ( m o d   p ) a^p\equiv a(mod\ p) apa(mod p).

特别地,如果 ( a , p ) = 1 , (a,p)=1, (a,p)=1,

那 么 a p − 1 ≡ 1 ( m o d   p ) 那么a^{p-1}\equiv 1(mod\ p) ap11(mod p)

欧拉给出了更一般的结论:
如 果 自 然 数 ( a , n ) = 1 , 那 么 如果自然数(a,n)=1,那么 (a,n)=1,
a ϕ ( n ) ≡ 1 ( m o d   n ) a^{\phi(n)}\equiv 1(mod\ n) aϕ(n)1(mod n)

证 明 欧 拉 的 结 论 : 证明欧拉的结论: :
如 果 x 跑 遍 了 n 的 互 质 系 , 那 么 a x 也 可 以 跑 遍 一 个 n 的 互 质 系 如果x跑遍了n的互质系,那么ax也可以跑遍一个n的互质系 xnaxn

所 以 ∏ ( a x ) ≡ ∏ ( x ) ( m o d   n ) 所以\prod(ax)\equiv \prod(x)(mod\ n) (ax)(x)(mod n)

( 这 里 x 取 n 的 互 质 系 里 的 所 有 值 ) (这里x取n的互质系里的所有值) (xn)

因 为 ( x , n ) = 1 , 所 以 两 边 同 时 除 掉 x ϕ ( x ) 因为(x,n)=1,所以两边同时除掉x^{\phi(x)} (x,n)=1,xϕ(x)

即 得 : a ϕ ( n ) ≡ 1 ( m o d   n ) 即得:a^{\phi(n)}\equiv 1(mod\ n) :aϕ(n)1(mod n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值