No45.数一数这里有多少关系

1.等价关系的数目

定义1:等价关系(equivalence relation)即设R是某个集合A上的一个二元关系。若R满足以下条件:

自反性: ∀ x ∈ A ,    x R x {\displaystyle \forall x\in A,~~xRx} xA,  xRx
对称性: ∀ x , y ∈ A ,    x R y       ⟹       y R x {\displaystyle \forall x,y\in A,~~xRy~~\implies ~~yRx} x,yA,  xRy    yRx
传递性: ∀ x , y , z ∈ A ,     ( x R y    ∧    y R z )       ⟹       x R z {\displaystyle \forall x,y,z\in A,~~~(xRy~~\wedge ~~yRz)~~\implies ~~xRz} x,y,zA,   (xRy    yRz)    xRz
则称 R 是 一 个 定 义 在 A 上 的 等 价 关 系 。 {\displaystyle R}是一个定义在{\displaystyle A}上的等价关系。 RA

定义2:等价类, 假 设 在 一 个 集 合 X 上 定 义 一 个 等 价 关 系 ( 用 ∼ 来 表 示 ) , 假设在一个集合X上定义一个等价关系(用\sim来表示), X
则 X 中 的 某 个 元 素 a 的 等 价 类 就 是 在 则X中的某个元素a的等价类就是在 Xa
X 中 等 价 于 a 的 所 有 元 素 所 形 成 的 子 集 : X中等价于a的所有元素所形成的子集: Xa:

[ a ] = { x ∈ X ∣ x ∼ a } 。 [a] = \{ x \in X | x \sim a \}。 [a]={xXxa}

  • 问:含有3个元素的集合可以构成多少个等价关系

  • 答:3个元素可以构成1,2,3个等价类,即

若构成1个等价类:这个等价类就是{a,b,c}

若构成2个等价类,则可以是({a,b},{c}) , ({a,c},{b}) , ({b,c},{a})这3种(注释:每个小

括号里面有2个等价类,小括号里面的大括号就是等价类中含有的元素)

若构成3个等价类,则可以是({a},{b},{c})这一种

共5种

然后每种等价类对应一个等价关系,比如

({a},{b},{c})对应的等价关系是{(a,a),(b,b),(c,c)}

({a,b},{c})对应的等价关系是{(a,a),(b,b),(a,b),(b,a),(c,c)}


  • 问:含有4个元素的集合可以构成多少个等价关系

  • 答:4个元素可以构成1,2,3,4个等价类,即

若构成1个等价类,有1种
若构成2个等价类,有 C 4 3 + C 4 2 2 ! = 7 C_4^3+{{C_4^2 }\over{2!}}=7 C43+2!C42=7
若构成3个等价类,有 C 4 2 = 6 C_4^2=6 C42=6
若构成4个等价类,有1种
共15种。

2.关系数目

  • 问:含有n个元素的集合可以构成多少种关系

  • 答:设A是含有n个元素的集合,则笛卡尔积A x A含有 n 2 n^2 n2个元素,A x A含有的子集数目为 2 n 2 2^{n^2} 2n2,所以可以构成 2 n 2 2^{n^2} 2n2种关系。

3.自反关系的数目

  • 问:含有n个元素的集合可以构成多少种自反关系

  • 答:假设元素分别为1,2,3,…,n,根据自反关系的定义,一定要有(1,1),(2,2),(3,3),…,(n,n)这n个对,还剩下 n 2 − n n^2-n n2n个对,它们可以任意分配,所以一共可以构成 2 n 2 − n 2^{n^2-n} 2n2n种自反关系。

4.对称关系的数目

  • 问:含有n个元素的集合可以构成多少种对称关系

  • 答:假设元素分别为1,2,3,…,n,根据对称关系的定义,一定要有(a,b),(b,a)

一定要同时出现,有 2 n 2 − n 2 2^{{n^2-n}\over 2} 22n2n种情况,还剩下(1,1),(2,2),(3,3),…,(n,n)这n个对,它们可以任意分配,所以一共有 2 n 2 − n 2 × 2 n = 2 n 2 + n 2 2^{{n^2-n}\over 2}\times 2^n=2^{{n^2+n}\over 2} 22n2n×2n=22n2+n

5.反对称(antisymmetric)关系的数目

  • 问:含有n个元素的集合可以构成多少种反对称关系

  • 答:假设元素分别为1,2,3,…,n,根据反对称关系的定义,除非a=b否则,(a,b),

(b,a)不能同时出现,我们有 n 2 − n 2 {{n^2-n}\over 2} 2n2n这样的对(a,b),(b,a),对于每一

个对,不选,选择对里的第一个,和第二个 共计3种情况,根据乘法定理,一共有

3 n 2 − n 2 3^{{n^2-n}\over 2} 32n2n种情况,还剩下(1,1),(2,2),(3,3),…,(n,n)这n个对,它们可以任意

分配,所以一共有 2 n 3 n 2 − n 2 2^n3^{{n^2-n}\over 2} 2n32n2n种反对称关系

6.非对称(Asymmetric)关系的数目

  • 问:含有n个元素的集合可以构成多少种非对称关系

  • 答:假设元素分别为1,2,3,…,n,根据非对称关系的定义,(a,b),

(b,a)不能同时出现(包括a=b),我们有 n 2 − n 2 {{n^2-n}\over 2} 2n2n这样的对(a,b),(b,a),对于每一

个对,不选,选择对里的第一个,和第二个 共计3种情况,根据乘法定理,一共有

3 n 2 − n 2 3^{{n^2-n}\over 2} 32n2n种情况,所以一共有 3 n 2 − n 2 3^{{n^2-n}\over 2} 32n2n种非对称关系

Reference

1.等价类
2.等价关系
3.离散数学N元集合关系个数计算


到底啦,觉得有帮助的话点个赞吧,阿里嘎多~
三玖

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值