安装NVIDIA显卡驱动、CUDA和CuDNN

本文详细指导了YOLOv5的安装配置过程,涉及CUDA、cuDNN、Anaconda和PyTorch环境的设置,包括Windows和UbuntuLinux平台,以及如何检查和安装NVIDIA显卡驱动和CUDA/CuDNN版本的选择和安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开头先提供几个博主,有的版本太老,可以和作者博文结合观看

YOLOv5超详细安装配置过程(含CUDA、cuDNN、anaconda、pytorch环境配置 - Windows / Ubuntu Linux)_yolo5安装-CSDN博客

【精选】史上最详细yolov5环境配置搭建+配置所需文件-CSDN博客

【2022最新版CUDA安装+环境配置,人工智能小白变强教程!!!-人工智能/深度学习/机器学习】 2022最新版CUDA安装+环境配置,人工智能小白变强教程!!!-人工智能/深度学习/机器学习_哔哩哔哩_bilibili

【【CUDA安装/多CUDA兼容】Windows深度学习环境配置】 【CUDA安装/多CUDA兼容】Windows深度学习环境配置_哔哩哔哩_bilibili

下载和安装 NVIDIA 显卡驱动

PS:只有英伟达的显卡才可以使用

首先在设备管理器中查看显卡型号,比如下图可以看到我的显卡型号为 RTX 4060

打开英伟达驱动程序下载网址:官方驱动 | NVIDIA

在这里根据你的显卡选择要下载的驱动的,点击搜索(PS:因为作者的使用的是笔记本,所以在 产品系列 选择RTX 4060 Series(Notebooks)即笔记本版本),搜索到的内容如下图所示,点击下载

下载完成后找到该文件,双击或右击管理员身份运行,点击OK安装

CUDA安装

PS:CUDA安装要根据显卡驱动版本进行选择,若不知道显卡驱动版本可打开CMD进行查看,具体操作为:按下win+R,在输入框中输入cmd打开命令行输入 nvidia-smi命令,如下图所示,作者CUDA版本最高可支持 12.2,所以安装的CUDA要<=12.2,这个版本是上文更新驱动之后更新到了12.2

下载完成后找到文件如图所示

右击以管理员身份运行,提示下图页面,这是一个提取文件暂存地址,放哪里都可以,安装完成后会自动删除。

点击OK后会等待一段时间,在出现的页面点击同意并继续进入下图所示界面,选择自定义

点击下一步后进入下图界面,将CUDA下的VS集成环境的安装进行取消

点击下一步,选择安装路径,如下图所示(第一次安装应该会有两个或者三个,作者已经安装过,因此这里只显示一个安装路径)

第一次安装会有两个或者三个安装路径

可以选择默认路径安装,也可以自定义路径,下面教程为自定义安装路径

在自定义安装的目录下新建两个文件夹NVIDIA GPU Computing Toolkit和NVIDIA Corporation(以前版本安装路径有一个Sample路径,现在好像没了,不过还是创建了)如下图所示:

在NVIDIA GPU Computing Toolkit文件夹下按照下图结构创建文件夹,作者用的是11.8版本故创建文件夹 v11.8

在NVIDIA Corporation文件夹下按照下图结构创建文件夹(不一定用的到)

接着回到CUDA安装,在安装目录处浏览放到新建好的文件夹下就好了(新建的文件名要和选择安装位置的文件名对应)。点击下一步就会安装

测试是否安装成功,在命令行输入 nvcc -V(V大写)出现如下图所示,则证明安装成功(是在CuDNN配置好后还是现在就可以测试安装成作者不清楚,作者是复制完CuDNN之后测试安装成功的)

这里是环境配置,不知道有没有用

打开环境变量(在电脑搜索栏中搜索编辑系统环境变量),下图所示红框中的绿色框中的内容应该在上文CUDA安装成功会自动添加,其余5条为手动添加(不知道有没有用)

接着在PATH路径下添加,如下图红框所示,主要为上文CUDA安装目录下 bin、include、lib、libnvvp四个文件路径,绿色框中是自动生成的,与我们手动添加的两个重复,故重复的两个可以不手动添加

CuDNN

进入网址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer,或搜索CuDNN进入,页面如下所示,点击Download cuDNN Library(下载需注册英伟达账号)

进入下图所示页面,目前最新为CUDA 12.x 和 CUDA 11.x,具体要根据Pytorch版本进行选择,打开Pytorch管网显示目前最高版本为 11.8(详细见Pytorch安装),所以这里我们下载11.x版本,下载windows的zip文件。PS:也可以点击先前版本根据需求进行选择。

将下载好的压缩文件解压缩,文件内主要为bin、include、lib三个文件夹,全选复制,进入上面安装好的CUDA文件夹 NVIDIA GPU Computing Toolkit\CUDA\v11.8\ 中进行粘贴

PS:若下载太慢可以复制下载链接到迅雷下载

### Linux 下 NVIDIA 显卡驱动CUDA cuDNN安装教程 #### 1. 安装 NVIDIA 显卡驱动 在 Ubuntu 上安装 NVIDIA 显卡驱动可以通过图形界面完成,也可以通过命令行操作。推荐方法如下: - 打开 *软件更新* 中的 *附加驱动* 页面,在可用选项中选择带有 `NVIDIA` 字样的驱动程序并应用更改[^2]。 如果需要手动安装或者禁用默认的 Nouveau 驱动,则可以执行以下步骤: ```bash sudo apt update sudo apt install linux-headers-$(uname -r) sudo modprobe -r nouveau && sudo bash -c "echo blacklist nouveau > /etc/modprobe.d/blacklist-nouveau.conf" sudo reboot ``` 重启后下载对应版本的 NVIDIA 驱动包,并运行安装脚本[^3]: ```bash chmod +x NVIDIA-Linux-x86_64-version.run sudo ./NVIDIA-Linux-x86_64-version.run ``` #### 2. 升级或安装 CUDA 工具包 为了确保兼容性性能优化,建议先确认已安装NVIDIA 驱动版本是否支持目标 CUDA 版本。 对于特定版本如 CUDA 10.1 可以按照官方文档说明进行配置[^1]。通常情况下可通过 APT 或者本地 RUN 文件两种方式实现安装过程。APT 方法较为简便: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntuXX/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda-10-1 ``` 完成后记得设置环境变量以便后续调用工具链正常工作: ```bash export PATH=/usr/local/cuda-10.1/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` #### 3. 配置 cuDNN 库文件 cuDNN 是针对深度学习框架加速而设计的一套高性能库集合。其依赖于基础 CUDA 平台之上构建而成。获取合法授权后的 cuDNN 压缩档需解压到指定目录下覆盖原有内容: 假设当前路径存在 tar.gz 形式的压缩包形式: ```bash tar zxvf cudnn-X-linux-x64-vY.Y.ZZ.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 最后验证整个流程无误可尝试编译示例项目来检测功能完整性。 ```python import tensorflow as tf print(tf.test.is_built_with_cuda()) # 输出 True 表明成功启用GPU计算能力 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值