开头先提供几个博主,有的版本太老,可以和作者博文结合观看
YOLOv5超详细安装配置过程(含CUDA、cuDNN、anaconda、pytorch环境配置 - Windows / Ubuntu Linux)_yolo5安装-CSDN博客
【精选】史上最详细yolov5环境配置搭建+配置所需文件-CSDN博客
【2022最新版CUDA安装+环境配置,人工智能小白变强教程!!!-人工智能/深度学习/机器学习】 2022最新版CUDA安装+环境配置,人工智能小白变强教程!!!-人工智能/深度学习/机器学习_哔哩哔哩_bilibili
【【CUDA安装/多CUDA兼容】Windows深度学习环境配置】 【CUDA安装/多CUDA兼容】Windows深度学习环境配置_哔哩哔哩_bilibili
下载和安装 NVIDIA 显卡驱动
PS:只有英伟达的显卡才可以使用
首先在设备管理器中查看显卡型号,比如下图可以看到我的显卡型号为 RTX 4060
打开英伟达驱动程序下载网址:官方驱动 | NVIDIA
在这里根据你的显卡选择要下载的驱动的,点击搜索(PS:因为作者的使用的是笔记本,所以在 产品系列 选择RTX 4060 Series(Notebooks)即笔记本版本),搜索到的内容如下图所示,点击下载
下载完成后找到该文件,双击或右击管理员身份运行,点击OK安装
CUDA安装
PS:CUDA安装要根据显卡驱动版本进行选择,若不知道显卡驱动版本可打开CMD进行查看,具体操作为:按下win+R,在输入框中输入cmd打开命令行输入 nvidia-smi命令,如下图所示,作者CUDA版本最高可支持 12.2,所以安装的CUDA要<=12.2,这个版本是上文更新驱动之后更新到了12.2
- 进入CUDA管网:CUDA Toolkit - Free Tools and Training | NVIDIA Developer,或者搜索CUDA进入,点击 Download now,进入下图所示页面(如下图红框所示,依次选择所需型号,最后下载PS:可能需要注册英伟达账号),也可以点击Archive of Previous CUDA Releases下载先前版本(要与CuDNN适配,比如作者在Pytorch上使用11.8版本的cu118,那么最好选择CUDA11.8和CuDNN 11.x)
下载完成后找到文件如图所示
右击以管理员身份运行,提示下图页面,这是一个提取文件暂存地址,放哪里都可以,安装完成后会自动删除。
点击OK后会等待一段时间,在出现的页面点击同意并继续进入下图所示界面,选择自定义
点击下一步后进入下图界面,将CUDA下的VS集成环境的安装进行取消
点击下一步,选择安装路径,如下图所示(第一次安装应该会有两个或者三个,作者已经安装过,因此这里只显示一个安装路径)
第一次安装会有两个或者三个安装路径
可以选择默认路径安装,也可以自定义路径,下面教程为自定义安装路径
在自定义安装的目录下新建两个文件夹NVIDIA GPU Computing Toolkit和NVIDIA Corporation(以前版本安装路径有一个Sample路径,现在好像没了,不过还是创建了)如下图所示:
在NVIDIA GPU Computing Toolkit文件夹下按照下图结构创建文件夹,作者用的是11.8版本故创建文件夹 v11.8
在NVIDIA Corporation文件夹下按照下图结构创建文件夹(不一定用的到)
接着回到CUDA安装,在安装目录处浏览放到新建好的文件夹下就好了(新建的文件名要和选择安装位置的文件名对应)。点击下一步就会安装
测试是否安装成功,在命令行输入 nvcc -V(V大写)出现如下图所示,则证明安装成功(是在CuDNN配置好后还是现在就可以测试安装成作者不清楚,作者是复制完CuDNN之后测试安装成功的)
这里是环境配置,不知道有没有用
打开环境变量(在电脑搜索栏中搜索编辑系统环境变量),下图所示红框中的绿色框中的内容应该在上文CUDA安装成功会自动添加,其余5条为手动添加(不知道有没有用)
接着在PATH路径下添加,如下图红框所示,主要为上文CUDA安装目录下 bin、include、lib、libnvvp四个文件路径,绿色框中是自动生成的,与我们手动添加的两个重复,故重复的两个可以不手动添加
CuDNN
进入网址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer,或搜索CuDNN进入,页面如下所示,点击Download cuDNN Library(下载需注册英伟达账号)
进入下图所示页面,目前最新为CUDA 12.x 和 CUDA 11.x,具体要根据Pytorch版本进行选择,打开Pytorch管网显示目前最高版本为 11.8(详细见Pytorch安装),所以这里我们下载11.x版本,下载windows的zip文件。PS:也可以点击先前版本根据需求进行选择。
将下载好的压缩文件解压缩,文件内主要为bin、include、lib三个文件夹,全选复制,进入上面安装好的CUDA文件夹 NVIDIA GPU Computing Toolkit\CUDA\v11.8\ 中进行粘贴
PS:若下载太慢可以复制下载链接到迅雷下载