Pytorch基于迁移学习的VGG卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕VGG神经网络的注释 两个基本一样 只是这个网络是迁移过来的

import torch
import torchvision
import torchvision.models
from PIL import Image
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

toPIL = transforms.ToPILImage()  # 将图像数据转换为PIL格式
trans = transforms.Compose([transforms.Resize((120, 120)),  # 将图像统一调整为120*120大小
                            transforms.ToTensor()])  # 将图像数据转换为张量

train_data = torchvision.datasets.CIFAR10(root="./data", train=True, download=True,  # 导入CIFAR10数据集的训练集
                                          transform=trans)

traindata = DataLoader(dataset=train_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行训练

test_data = torchvision.datasets.CIFAR10(root="./data", train=False, download=False,  # 导入CIFAR10数据集的测试集
                                         transform=trans)

train_size = len(train_data)  # 训练集的长度
test_size = len(test_data)  # 测试集的长度
print(train_size)
print(test_size)
testdata = DataLoader(dataset=test_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行测试




alexnet1 = torchvision.models.vgg16(pretrained = True)   #下载预训练模型
alexnet1.add_module("linear",nn.Linear(1000 , 10))  #在预训练模型的最后一层再加上一层全连接层进行训练微调,因为本数据集是10种 而且与训练模型都是在imagenet数据集上训练的 是1000种的输出
test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小
#其他地方跟alexnet的代码一样
test1 = alexnet1(test1)
print(test1.shape)

epoch = 2  # 迭代次数
learning = 0.0001  # 学习率
optimizer = torch.optim.Adam(alexnet1.parameters(), lr=learning)  # 使用Adam优化器
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵

train_loss_all = []  # 存放训练集损失的数组
train_accur_all = []  # 存放训练集准确率的数组
test_loss_all = []  # 存放测试集损失的数组
test_accur_all = []  # 存放测试集准确率的数组
for i in range(epoch):
    train_loss = 0
    train_num = 0.0
    train_accuracy = 0.0
    alexnet1.train()
    train_bar = tqdm(traindata)
    for step, data in enumerate(train_bar):
        img, target = data
        optimizer.zero_grad()  # 清空历史梯度
        outputs = alexnet1(img)  # 将图片打入网络进行训练

        loss1 = loss(outputs, target)
        outputs = torch.argmax(outputs, 1)
        loss1.backward()
        optimizer.step()
        train_loss += abs(loss1.item()) * img.size(0)
        accuracy = torch.sum(outputs == target)
        train_accuracy = train_accuracy + accuracy
        train_num += img.size(0)

    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)
    train_accur_all.append(train_accuracy.double().item() / train_num)
    test_loss = 0
    test_accuracy = 0.0
    test_num = 0
    alexnet1.eval()
    with torch.no_grad():
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data

            outputs = alexnet1(img)
            loss2 = loss(outputs, target)
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target)
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)

    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(epoch), train_loss_all,
         "ro-", label="Train loss")
plt.plot(range(epoch), test_loss_all,
         "bs-", label="test loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(epoch), train_accur_all,
         "ro-", label="Train accur")
plt.plot(range(epoch), test_accur_all,
         "bs-", label="test accur")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()

torch.save(alexnet1, "xiaozhai.pth")
print("模型已保存")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小馨馨的小翟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值