2024华水研究生国家奖学金获奖心得分享---师门第一个国奖分享篇

       本期的经验分享,采访到了我的一位非常非常非常优秀的师弟,师弟于今年成功获得我校的(研究生国家奖学金+研究生一等学业奖学金)等诸多荣誉,下面他将使用第一人称的方式分享自己在研究生生涯学习过程中的一些宝贵的经验、包括且不限于需要避的坑、科研方式、拿奖学金方面的一些方法、班干部的工作方法等,为后续师弟师妹们找实习提供宝贵的经验分享,毕竟这是咱们师门的第一个国家奖学金,意义非凡,希望后续的师弟在看到这篇经验分享之后,继续努力,获得国家奖学金,为师门再创辉煌。     

       首先作个自我介绍:本人是作者的师弟,河南人,本科就读于辽宁一所双非高校自动化专业,大四考研由于目标定得过高而又不想调剂到双非高校选择放弃读研(对于现在的我个人看来,这个选择是错误的!犯错成本是两年青春),毕业后于上海一家国有控股公司从事仪控类工作。当面对繁华热闹、藏龙卧虎的大上海时,我深感自己的渺小,所以不顾亲朋劝阻,毅然辞掉在他们看来相对体面的工作选择考研,目前就读于河南一所双非高校电子信息专业,刚进入研三。

基本情况介绍:     

        作为一名党员,本人在读研期间一直担任团支书,获得过2次优秀团干部荣誉和2次一等学业奖学金,疫情期间也参加过3次家乡和学校的疫情防控志愿活动。在学习成绩方面,平均绩点4.13,专业排名第1,已经通过英语6级。在科研方面,以第1作者发表中文核心期刊论文1篇,申请软件著作权3项。

经验分享介绍: 

      鉴于在获得国奖的过程中确实走了很多弯路,同时也很幸运得到了诸多师兄师姐的帮助,因此也希望分享一下自己的经验给后续的师弟师妹们,希望对你们有所帮助。本人下面就有幸获得国奖谈一谈自己的心得体会,并给小伙伴们分享一些相关经验,仅供参考。上干货:

       首先就是端正心态:搞好学习和科研是为了拿奖学金,但又不仅仅是拿奖学金。在我校,评国家奖学金需要够强的综合素质,其中科研方面占比50%,学科绩点和素质分别占比30%和20%。实际上,本人在科研方面与那些学术大佬相比并不算突出,但优点是在科研、学科绩点(我校要求必须排名专业前30%,否则取消评选资格!)和素质方面都能表现得比较好。因此,对于有读博打算的小伙伴,我个人认为应该把工作重心放在绩点和科研上,毕竟发表论文才是王道。对于科研热情不是那么强,只求顺利毕业然后就业的小伙伴,可以在保证学科绩点满足评选要求的前提下,将工作重点从科研向素质方面适当转移(显然,本人属于后者)。当然,要拿到足够高的素质积分需要在校有任职(比如班委、研究生会主席等等),需要为班级和同学们做很多事情,这也比较考验一个人的心态。以上两条路走得好都有可能拿到国奖。

       其次,尽早通过英语6级!6级!6级!英语6级虽然对评国奖没太大意义,但从长远看来,我们读研的目的不只是为了拿奖学金,最重要的是为了找到一份理想的工作。从目前理工科就业环境看来,很多好的企业和科研院所都会要求研究生通过英语6级,所以通过6级对咱们以后职业发展至关重要。

       最后,有问题找师兄师姐。不管是学习、科研还是就业方面遇到问题,找师兄师姐绝对是一个明智之举,本人深深受益,受益终身。咱们遇到的所有困难和问题,师兄师姐们几乎都遇到过,所以找他们排忧解难会让咱们少走很多弯路。

内容概要:本文主要介绍了MySQL元数据的概念及其获取方式。MySQL元数据是关于数据库和其对象(如表、列、索引等)的信息,存储在系统表中,这些表位于information_schema数据库中。文章详细列举了多种常用的MySQL元数据查询命令,如查看所有数据库(SHOW DATABASES)、选择数据库(USE database_name)、查看数据库中的所有表(SHOW TABLES)、查看表的结构(DESC table_name)、查看表的索引(SHOW INDEX FROM table_name)、查看表的创建语句(SHOW CREATE TABLE table_name)、查看表的行数(SELECT COUNT(*) FROM table_name)、查看列的信息以及查看外键信息等。此外,还介绍了information_schema数据库中的多个表,包括SCHEMATA表、TABLES表、COLUMNS表、STATISTICS表、KEY_COLUMN_USAGE表和REFERENTIAL_CONSTRAINTS表,这些表提供了丰富的元数据信息,可用于查询数据库结构、表信息、列信息、索引信息等。最后,文章还给出了获取查询语句影响的记录数的Perl和PHP实例,以及获取数据库和数据表列表的方法。 适合人群:对MySQL数据库有一定了解,想要深入学习MySQL元数据获取和使用的数据库管理员或开发人员。 使用场景及目标:①帮助用户掌握MySQL元数据的获取方法,以便更好地管理和维护数据库;②通过查询information_schema数据库中的系统表,深入了解数据库结构、表信息、列信息、索引信息等;③提供Perl和PHP实例,方便用户在不同编程环境中获取查询语句影响的记录数和数据库及数据表列表。 其他说明:在使用上述SQL语句时,请注意将查询中的'your_database_name'和'your_table_name'替换为实际的数据库名和表名。此外,在获取数据库和数据表列表时,如果没有足够的权限,结果将返回null。
经验模态分解(Empirical Mode Decomposition,EMD)是一种基于数据的信号处理技术,由Nigel Robert Hocking在1998年提出,主要用于分析非线性、非平稳信号。它能够将复杂的信号自适应地分解为若干个本征模态函数(Intrinsic Mode Function,IMF),每个IMF代表信号中不同的频率成分和动态特征。在MATLAB环境下实现EMD去噪,通常包括以下步骤: 信号预处理:对原始信号进行预处理,例如平滑处理或去除异常值,以提高后续分解的准确性。 EMD分解:利用EMD算法对预处理后的信号进行分解,将其拆分为多个IMF和一个残余项。每个IMF对应信号的一个内在频率成分,而残余项通常包含低频或直流成分。 希尔伯特变换:对每个IMF进行希尔伯特变换,计算其瞬时幅度和相位,形成希尔伯特谱,从而更直观地分析信号的时频特性。 去噪策略:常见的去噪策略有两种。一种是根据IMF的频率特性,选择保留低频或高频部分,去除噪声;另一种是利用IMF的Hurst指数,噪声IMF的Hurst指数通常较低,因此可以去除Hurst指数低于阈值的IMF。 重构信号:根据保留的IMF和残余项,通过逆希尔伯特变换和累加,重构出去噪后的信号。 Hurst分析:Hurst指数是评估时间序列长期依赖性的指标,用于区分随机性和自相似性。在EMD去噪中,Hurst分析有助于识别噪声IMF,从而提升去噪效果。 在提供的压缩包中,“license.txt”可能是软件的许可协议文件,用户需遵循其条款使用代码。“EMD-DFA”可能是包含EMD去噪和去趋势波动分析(Detrended Fluctuation Analysis,DFA)的MATLAB代码。DFA是一种用于计算信号长期自相关的统计方法,常与EMD结合,进一步分析信号的分形特征,帮助识别噪声并优化去噪效果。该MATLA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小馨馨的小翟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值