支持向量机SVM——代码简洁

通过sklearn机器学习工具库
代码十分简洁,内有详细步骤和解释。
直接复制,带入数据,进行调用即可出结果,模型参数设置见文末

def SVM(X_train, Y_train, X_test, Y_test):
    """
    X_train: 特征训练集
    Y_train: 标注训练集
    X_test: 特征测试集
    Y_test: 标注测试集
    """

    # 01.创建模型
    from sklearn.svm import SVC
    SVM_model = SVC(C=10000)
 
    # 02.训练模型
    SVM_model = SVM_model.fit(X_train, Y_train)

    # 03.模型预测
    Y_pred = SVM_model.predict(X_test)

    # 04.模型评价(accuracy_score:准确率;recall_score:召回率; f1_score:F值)
    from sklearn.metrics import accuracy_score, recall_score, f1_score
    print('ACC:', accuracy_score(Y_test, Y_pred))
    print('REC:', recall_score(Y_test, Y_pred))
    print('F-Score:', f1_score(Y_test, Y_pred))

    # 05.输出模型参数
    print('支持向量指数:', SVM_model.support_)
    print('支持向量:', SVM_model.support_vectors_)
    print('每一类的支持向量数量:', SVM_model.n_support_)

    return

模型参数设置:

参数C:惩罚系数(设置的越高,效果越好,但相应的计算时间也会增加)
参数kernel:核函数,可选:'linear'(线性),'poly'(多项式),'rbf','sigmoid','precomputed'等
参数degree:多项式阶数(如果核函数选择'poly',则需要设置该参数)
参数max_iter:最大迭代次数
参数tol:精度
参数decision_function_shape:多分类,可取:'ovo'和'ovr',默认为'ovr'       
……更多参数,见官网。

输出参数设置:

support_:支持向量指数
support_vectors_:支持向量
n_support_:每一类的支持向量数量
……更多的模型参数,见官网

这里的模型评价指标选择了:

① accuracy_score:准确率;
② recall_score:召回率;
③ f1_score:F值。

在上面代码中都是针对测试集的效果,也可以对训练集进行预测,然后评价训练集的效果,综合比较,可以看看是否会出现过拟合现象。

#include <math.h> #include <stdio.h> #include <stdlib.h> #include <ctype.h> #include <float.h> #include <string.h> #include <stdarg.h> #include <limits.h> #include <locale.h> #include "svm.h" int libsvm_version = LIBSVM_VERSION; typedef float Qfloat; typedef signed char schar; #ifndef min template <class T> static inline T min(T x,T y) { return (x<y)?x:y; } #endif #ifndef max template <class T> static inline T max(T x,T y) { return (x>y)?x:y; } #endif template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } template <class S, class T> static inline void clone(T*& dst, S* src, int n) { dst = new T[n]; memcpy((void *)dst,(void *)src,sizeof(T)*n); } static inline double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) static void print_string_stdout(const char *s) { fputs(s,stdout); fflush(stdout); } static void (*svm_print_string) (const char *) = &print_string_stdout; #if 1 static void info(const char *fmt,...) { char buf[BUFSIZ]; va_list ap; va_start(ap,fmt); vsprintf(buf,fmt,ap); va_end(ap); (*svm_print_string)(buf); } #else static void info(const char *fmt,...) {} #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l,long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_,long int size_):l(l_),size(size_) { head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for(head_t *h = lru_head.next; h != &lru_head; h=h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if(h->len) lru_delete(h); int more = len - h->len; if(more > 0) { // free old space while(size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); size -= more; swap(h->len,len); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Imp_北溟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值